Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters











Database
Language
Publication year range
1.
Development ; 150(10)2023 05 15.
Article in English | MEDLINE | ID: mdl-37254876

ABSTRACT

RAS/MAPK gene dysfunction underlies various cancers and neurocognitive disorders. Although the roles of RAS/MAPK genes have been well studied in cancer, less is known about their function during neurodevelopment. There are many genes that work in concert to regulate RAS/MAPK signaling, suggesting that if common brain phenotypes could be discovered they could have a broad impact on the many other disorders caused by distinct RAS/MAPK genes. We assessed the cellular and molecular consequences of hyperactivating the RAS/MAPK pathway using two distinct genes in a cell type previously implicated in RAS/MAPK-mediated cognitive changes, cortical GABAergic interneurons. We uncovered some GABAergic core programs that are commonly altered in each of the mutants. Notably, hyperactive RAS/MAPK mutants bias developing cortical interneurons towards those that are somatostatin positive. The increase in somatostatin-positive interneurons could also be prevented by pharmacological inhibition of the core RAS/MAPK signaling pathway. Overall, these findings present new insights into how different RAS/MAPK mutations can converge on GABAergic interneurons, which may be important for other RAS/MAPK genes and related disorders.


Subject(s)
Signal Transduction , Somatostatin , Alleles , Somatostatin/genetics , Somatostatin/metabolism , Signal Transduction/genetics , MAP Kinase Signaling System/genetics , Interneurons/metabolism , GABAergic Neurons/metabolism
2.
Cereb Cortex ; 31(6): 3064-3081, 2021 05 10.
Article in English | MEDLINE | ID: mdl-33570093

ABSTRACT

Many developmental syndromes have been linked to genetic mutations that cause abnormal ERK/MAPK activity; however, the neuropathological effects of hyperactive signaling are not fully understood. Here, we examined whether hyperactivation of MEK1 modifies the development of GABAergic cortical interneurons (CINs), a heterogeneous population of inhibitory neurons necessary for cortical function. We show that GABAergic-neuron specific MEK1 hyperactivation in vivo leads to increased cleaved caspase-3 labeling in a subpopulation of immature neurons in the embryonic subpallial mantle zone. Adult mutants displayed a significant loss of parvalbumin (PV), but not somatostatin, expressing CINs and a reduction in perisomatic inhibitory synapses on excitatory neurons. Surviving mutant PV-CINs maintained a typical fast-spiking phenotype but showed signs of decreased intrinsic excitability that coincided with an increased risk of seizure-like phenotypes. In contrast to other mouse models of PV-CIN loss, we discovered a robust increase in the accumulation of perineuronal nets, an extracellular structure thought to restrict plasticity. Indeed, we found that mutants exhibited a significant impairment in the acquisition of behavioral response inhibition capacity. Overall, our data suggest PV-CIN development is particularly sensitive to hyperactive MEK1 signaling, which may underlie certain neurological deficits frequently observed in ERK/MAPK-linked syndromes.


Subject(s)
Cerebral Cortex/embryology , Cerebral Cortex/metabolism , GABAergic Neurons/metabolism , Inhibition, Psychological , MAP Kinase Kinase 1/metabolism , Parvalbumins/metabolism , Animals , Cerebral Cortex/chemistry , Electroencephalography/methods , Embryonic Development/physiology , GABAergic Neurons/chemistry , Locomotion/physiology , MAP Kinase Kinase 1/analysis , Mice , Organ Culture Techniques , Parvalbumins/analysis , Signal Transduction/physiology
SELECTION OF CITATIONS
SEARCH DETAIL