Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters










Database
Language
Publication year range
1.
Life Sci Alliance ; 5(2)2022 02.
Article in English | MEDLINE | ID: mdl-34848436

ABSTRACT

The clinical outcome of SARS-CoV-2 infections, which can range from asymptomatic to lethal, is crucially shaped by the concentration of antiviral antibodies and by their affinity to their targets. However, the affinity of polyclonal antibody responses in plasma is difficult to measure. Here we used microfluidic antibody affinity profiling (MAAP) to determine the aggregate affinities and concentrations of anti-SARS-CoV-2 antibodies in plasma samples of 42 seropositive individuals, 19 of which were healthy donors, 20 displayed mild symptoms, and 3 were critically ill. We found that dissociation constants, K d, of anti-receptor-binding domain antibodies spanned 2.5 orders of magnitude from sub-nanomolar to 43 nM. Using MAAP we found that antibodies of seropositive individuals induced the dissociation of pre-formed spike-ACE2 receptor complexes, which indicates that MAAP can be adapted as a complementary receptor competition assay. By comparison with cytopathic effect-based neutralisation assays, we show that MAAP can reliably predict the cellular neutralisation ability of sera, which may be an important consideration when selecting the most effective samples for therapeutic plasmapheresis and tracking the success of vaccinations.


Subject(s)
Antibodies, Viral/blood , COVID-19/immunology , Microfluidics/methods , SARS-CoV-2/immunology , Adult , Aged , Angiotensin-Converting Enzyme 2/blood , Angiotensin-Converting Enzyme 2/immunology , Antibodies, Viral/immunology , Antibody Affinity , B-Lymphocytes/immunology , B-Lymphocytes/virology , COVID-19/blood , COVID-19/etiology , Cross Reactions , Female , Humans , Male , Middle Aged , Severity of Illness Index , Spike Glycoprotein, Coronavirus/blood , Spike Glycoprotein, Coronavirus/immunology , Surface Plasmon Resonance
2.
EMBO J ; 40(21): e107711, 2021 11 02.
Article in English | MEDLINE | ID: mdl-34524703

ABSTRACT

RNA viruses induce the formation of subcellular organelles that provide microenvironments conducive to their replication. Here we show that replication factories of rotaviruses represent protein-RNA condensates that are formed via liquid-liquid phase separation of the viroplasm-forming proteins NSP5 and rotavirus RNA chaperone NSP2. Upon mixing, these proteins readily form condensates at physiologically relevant low micromolar concentrations achieved in the cytoplasm of virus-infected cells. Early infection stage condensates could be reversibly dissolved by 1,6-hexanediol, as well as propylene glycol that released rotavirus transcripts from these condensates. During the early stages of infection, propylene glycol treatments reduced viral replication and phosphorylation of the condensate-forming protein NSP5. During late infection, these condensates exhibited altered material properties and became resistant to propylene glycol, coinciding with hyperphosphorylation of NSP5. Some aspects of the assembly of cytoplasmic rotavirus replication factories mirror the formation of other ribonucleoprotein granules. Such viral RNA-rich condensates that support replication of multi-segmented genomes represent an attractive target for developing novel therapeutic approaches.


Subject(s)
Cytoplasmic Ribonucleoprotein Granules/metabolism , Protein Processing, Post-Translational , RNA-Binding Proteins/metabolism , Rotavirus/genetics , Viral Nonstructural Proteins/metabolism , Animals , Cattle , Cell Line , Cytoplasmic Ribonucleoprotein Granules/drug effects , Cytoplasmic Ribonucleoprotein Granules/ultrastructure , Cytoplasmic Ribonucleoprotein Granules/virology , Gene Expression Regulation, Viral , Genes, Reporter , Glycols/pharmacology , Green Fluorescent Proteins/genetics , Green Fluorescent Proteins/metabolism , HEK293 Cells , Haplorhini , Host-Pathogen Interactions/genetics , Humans , Osmolar Concentration , Phosphorylation , Propylene Glycol/pharmacology , RNA-Binding Proteins/antagonists & inhibitors , RNA-Binding Proteins/chemistry , RNA-Binding Proteins/genetics , Rotavirus/drug effects , Rotavirus/growth & development , Rotavirus/ultrastructure , Signal Transduction , Viral Nonstructural Proteins/antagonists & inhibitors , Viral Nonstructural Proteins/chemistry , Viral Nonstructural Proteins/genetics , Virus Assembly/drug effects , Virus Assembly/genetics , Virus Replication/drug effects , Virus Replication/genetics
3.
Curr Opin Neurobiol ; 61: 58-64, 2020 04.
Article in English | MEDLINE | ID: mdl-32092527

ABSTRACT

The formation of aggregates from a range of normally soluble peptides and proteins is the hallmark of several neurodegenerative disorders, including Parkinson's and Alzheimer's diseases. Certain such aggregates possess the ability to replicate and spread pathology, within tissues and in some case also between organisms. An understanding of which processes govern the overall rate of aggregate formation is thus of key interest. Here, we discuss the fundamental molecular processes of protein aggregation, review how their rates can be determined by kinetic measurements in the test-tube, and explore the mechanistic similarities and differences to animal models and human disease. We conclude that a quantitative mathematical model for aggregate replication and spreading in vivo requires additional information but would provide a theoretical framework to understand results from different experiments and how they connect to human disease.


Subject(s)
Protein Aggregates , Alzheimer Disease , Animals , Humans , Kinetics , Prions
4.
Source Code Biol Med ; 9: 16, 2014.
Article in English | MEDLINE | ID: mdl-25093038

ABSTRACT

BACKGROUND: A growing spectrum of applications for natural and synthetic polymers, whether in industry or for biomedical research, demands for fast and universally applicable tools to determine the mechanical properties of very diverse polymers. To date, determining these properties is the privilege of a limited circle of biophysicists and engineers with appropriate technical skills. FINDINGS: Easyworm is a user-friendly software suite coded in MATLAB that simplifies the image analysis of individual polymeric chains and the extraction of the mechanical properties of these chains. Easyworm contains a comprehensive set of tools that, amongst others, allow the persistence length of single chains and the Young's modulus of elasticity to be calculated in multiple ways from images of polymers obtained by a variety of techniques (e.g. atomic force microscopy, electron, contrast-phase, or epifluorescence microscopy). CONCLUSIONS: Easyworm thus provides a simple and efficient tool for specialists and non-specialists alike to solve a common problem in (bio)polymer science. Stand-alone executables and shell scripts are provided along with source code for further development.

SELECTION OF CITATIONS
SEARCH DETAIL
...