Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 11 de 11
Filter
Add more filters










Publication year range
1.
Epilepsia ; 65(6): 1777-1790, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38491947

ABSTRACT

OBJECTIVE: Brain infection with Theiler's murine encephalomyelitis virus (TMEV) in C57BL/6J mice can induce acquired epileptogenesis. Diet alters acute seizure incidence in TMEV-infected mice; yet it is unclear whether intestinal dysbiosis may also impact acute or chronic behavioral comorbidities. This study thus assessed the impact of diet formulation and sterilization on acute seizure presentation, gut microbiome composition, and epilepsy-related chronic behavioral comorbidities. METHODS: Baseline fecal samples were collected from male C57BL/6J mice (4- to 5-weeks-old; Jackson Labs) upon facility arrival. Mice were randomized to either autoclaved (AC) or irradiated diet (IR) (Prolab RMH 3000) or IR (Picolab 5053). Three days later, mice underwent intracerebral TMEV or phosphate-buffered saline (PBS) injection. Fecal samples were collected from a subset of mice at infection (Day 0) and Day 7 post-infection. Epilepsy-related working memory deficits and seizure threshold were assessed 6 weeks post-infection. Gut microbiome diversity was determined by 16S rRNA amplicon sequencing of fecal samples. RESULTS: TMEV-infected mice displayed acute handling-induced seizures, regardless of diet: 28 of 57 IR Picolab 5053 (49.1%), 30 of 41 IR Prolab RMH 3000 (73.2%), and 47 of 77 AC Prolab RMH 3000 (61%) mice displayed seizures. The number of observed seizures differed significantly by diet: IR Picolab 5053 diet-fed mice had 2.2 ± 2.8 seizures (mean ± standard deviation), IR Prolab RMH 3000 diet-fed mice had 3.5 ± 2.9 seizures, and AC Prolab RMH 3000 diet-fed mice had 4.4 ± 3.8 seizures during the 7-day monitoring period. Gut microbiome composition differed significantly in TMEV-infected mice fed the AC Prolab RMH 3000 diet, with measured differences in gram-positive bacteria. These mice also displayed worsened long-term working memory deficits. SIGNIFICANCE: Diet-induced differences in intestinal dysbiosis in the TMEV model are associated with marked changes in acute seizure presentation, symptomatic recovery, and onset of chronic behavioral comorbidities of epilepsy. Our study reveals a novel disease-modifying impact of dietary manipulation on intestinal bacterial species after TMEV-induced acute seizures.


Subject(s)
Gastrointestinal Microbiome , Mice, Inbred C57BL , Seizures , Theilovirus , Animals , Mice , Seizures/etiology , Male , Diet , Cardiovirus Infections , Sterilization/methods , Feces/microbiology , Acute Disease
2.
Prog Neurobiol ; 235: 102591, 2024 Apr.
Article in English | MEDLINE | ID: mdl-38484965

ABSTRACT

OBJECTIVE: Hyperexcitability is intimately linked to Alzheimer's disease (AD) pathology, but the precise timing and contributions of neuronal hyperexcitability to disease progression is unclear. Seizure induction in rodent AD models can uncover new therapeutic targets. Further, investigator-evoked seizures can directly establish how hyperexcitability and AD-associated risk factors influence neuropathological hallmarks and disease course at presymptomatic stages. METHODS: Corneal kindling is a well-characterized preclinical epilepsy model that allows for precise control of seizure history to pair to subsequent behavioral assessments. 2-3-month-old APP/PS1, PSEN2-N141I, and transgenic control male and female mice were thus sham or corneal kindled for 2 weeks. Seizure-induced changes in glia, serotonin pathway proteins, and amyloid ß levels in hippocampus and prefrontal cortex were quantified. RESULTS: APP/PS1 females were more susceptible to corneal kindling. However, regardless of sex, APP/PS1 mice experienced extensive seizure-induced mortality versus kindled Tg- controls. PSEN2-N141I mice were not negatively affected by corneal kindling. Mortality correlated with a marked downregulation of hippocampal tryptophan hydroxylase 2 and monoamine oxidase A protein expression versus controls; these changes were not detected in PSEN2-N141I mice. Kindled APP/PS1 mice also exhibited soluble amyloid ß upregulation and glial reactivity without plaque deposition. SIGNIFICANCE: Evoked convulsive seizures and neuronal hyperexcitability in pre-symptomatic APP/PS1 mice promoted premature mortality without pathological Aß plaque deposition, whereas PSEN2-N141I mice were unaffected. Disruptions in serotonin pathway metabolism in APP/PS1 mice was associated with increased glial reactivity without Aß plaque deposition, demonstrating that neuronal hyperexcitability in early AD causes pathological Aß overexpression and worsens long-term outcomes through a serotonin-related mechanism.


Subject(s)
Alzheimer Disease , Mice , Male , Female , Animals , Alzheimer Disease/metabolism , Amyloid beta-Peptides/metabolism , Serotonin , Mice, Transgenic , Plaque, Amyloid/complications , Seizures/complications , Disease Models, Animal , Amyloid beta-Protein Precursor/genetics
3.
bioRxiv ; 2023 Jul 31.
Article in English | MEDLINE | ID: mdl-36711965

ABSTRACT

OBJECTIVE: People with early-onset Alzheimer's disease (AD) are at elevated seizure risk. Further, chronic seizures in pre-symptomatic stages may disrupt serotonin pathway-related protein expression, precipitating the onset of AD-related pathology and burden of neuropsychiatric comorbidities. METHODS: 2-3-month-old APP/PS1, PSEN2-N141I, and transgenic control mice were sham or corneal kindled for 2 weeks to model chronic seizures. Seizure-induced changes in glia, serotonin pathway proteins, and amyloid beta; levels in hippocampus and prefrontal cortex were quantified. RESULTS: APP/PS1 mice experienced worsened mortality versus kindled Tg- controls. APP/PS1 females were also more susceptible to chronic kindled seizures. These changes correlated with a marked downregulation of hippocampal tryptophan hydroxylase 2 and monoamine oxidase A protein expression compared to controls; these changes were not detected in PSEN2-N141I mice. Kindled APP/PS1 mice exhibited amyloid beta; overexpression and glial overactivity without plaque deposition. PSEN2 protein expression was AD model-dependent. SIGNIFICANCE: Seizures evoked in pre-symptomatic APP/PS1 mice promotes premature mortality in the absence of pathological amyloid deposition. Disruptions in serotonin pathway metabolism are associated with increased glial reactivity and PSEN2 downregulation without amyloid beta; deposition. This study provides the first direct evidence that seizures occurring prior to amyloid beta, plaque accumulation worsen disease burden in an AD genotype-specific manner.

4.
Exp Neurol ; 361: 114321, 2023 03.
Article in English | MEDLINE | ID: mdl-36634751

ABSTRACT

Patients with early-onset Alzheimer's disease (EOAD) are at elevated risk for seizures, including patients with presenilin 2 (PSEN2) variants. Like people with epilepsy, uncontrolled seizures may worsen cognitive function in AD. While the relationship between seizures and amyloid beta accumulation has been more thoroughly investigated, the role of other drivers of seizure susceptibility in EOAD remain relatively understudied. We therefore sought to define the impact of loss of normal PSEN2 function and chronic seizures on cognitive function in the aged brain. Male and female PSEN2 KO and age- and sex-matched wild-type (WT) mice were sham or corneal kindled beginning at 6-months-old. Kindled and sham-kindled mice were then challenged up to 6 weeks later in a battery of cognitive tests: non-habituated open field (OF), T-maze spontaneous alternation (TM), and Barnes maze (BM), followed by immunohistochemistry for markers of neuroinflammation and neuroplasticity. PSEN2 KO mice required significantly more stimulations to kindle (males: p < 0.02; females: p < 0.02) versus WT. Across a range of behavioral tests, the cognitive performance of kindled female PSEN2 KO mice was most significantly impaired versus age-matched WT females. Male BM performance was generally worsened by seizures (p = 0.038), but loss of PSEN2 function did not itself worsen cognitive performance. Conversely, kindled PSEN2 KO females made the most BM errors (p = 0.007). Chronic seizures also significantly altered expression of hippocampal neuroinflammation and neuroplasticity markers in a sex-specific manner. Chronic seizures may thus significantly worsen hippocampus-dependent cognitive deficits in aged female, but not male, PSEN2 KO mice. Our work suggests that untreated focal seizures may worsen cognitive burden with loss of normal PSEN2 function in a sex-related manner.


Subject(s)
Alzheimer Disease , Amyloid beta-Peptides , Male , Mice , Female , Animals , Presenilin-2/genetics , Neuroinflammatory Diseases , Seizures , Cognition , Presenilin-1
5.
Front Neurol ; 13: 833624, 2022.
Article in English | MEDLINE | ID: mdl-35572927

ABSTRACT

Older people represent the fastest growing group with epilepsy diagnosis. For example, cerebrovascular disease may underlie roughly 30-50% of epilepsy in older adults and seizures are also an underrecognized comorbidity of Alzheimer's disease (AD). As a result, up to 10% of nursing home residents may take antiseizure medicines (ASMs). Despite the greater incidence of epilepsy in older individuals and increased risk of comorbid seizures in people with AD, aged animals with seizures are strikingly underrepresented in epilepsy drug discovery practice. Increased integration of aged animals into preclinical epilepsy drug discovery could better inform the potential tolerability and pharmacokinetic interactions in aged individuals as the global population becomes increasingly older. Quite simply, the ASMs on the market today were brought forth based on efficacy in young adult, neurologically intact rodents; preclinical information concerning the efficacy and safety of promising ASMs is not routinely evaluated in aged animals. Integrating aged animals more often into basic epilepsy research may also uncover novel treatments for hyperexcitability. For example, cannabidiol and fenfluramine demonstrated clear efficacy in syndrome-specific pediatric models that led to a paradigm shift in the perceived value of pediatric models for ASM discovery practice; aged rodents with seizures or rodents with aging-related neuropathology represent an untapped resource that could similarly change epilepsy drug discovery. This review, therefore, summarizes how aged rodent models have thus far been used for epilepsy research, what studies have been conducted to assess ASM efficacy in aged rodent seizure and epilepsy models, and lastly to identify remaining gaps to engage aging-related neurological disease models for ASM discovery, which may simultaneously reveal novel mechanisms associated with epilepsy.

6.
Epilepsia ; 62(12): 3076-3090, 2021 12.
Article in English | MEDLINE | ID: mdl-34625953

ABSTRACT

OBJECTIVES: Benzodiazepines are the standard of care for the management of sustained seizure emergencies, including status epilepticus (SE) and seizure clusters. Seizure clusters are a variably defined seizure emergency wherein a patient has multiple seizures above a baseline rate, with intervening periods of recovery, distinguishing clusters from SE. Although these seizure emergencies are phenotypically distinct, the precise pathophysiological and mechanistic differences between SE and seizure clusters are understudied. Emergency-specific preclinical models may differentiate the behavioral and pathological mechanisms that are acutely associated with seizure emergencies and seizure termination to better manage these events. METHODS: Herein we characterize a novel model of sustained seizure emergency induced in CF-1 mice through the combined administration of high-dose phenytoin (PHT; 50 mg/kg, i.p.) and pentylenetetrazol (PTZ; 100 mg/kg, s.c.). RESULTS: We presently describe a mouse model of sustained seizure emergency that is pathologically, pharmacologically, and behaviorally distinct from SE. Acute administration of PHT 1 h prior to PTZ led to significantly more mice with unremitting continuous seizure activity (CSA; 73.4%) vs vehicle-pretreated mice (13.8%; p < .0001). CSA was sensitive to lorazepam and valproic acid when administered at seizure onset and 30 minutes later. Carbamazepine worsened seizure control and post-CSA survival. Mice in CSA exhibited electroencephalography (EEG) patterns distinct from kainic acid-induced SE and PTZ alone, clearly differentiating CSA from SE and PTZ-induced myoclonic seizures. Neuropathological assessment by Fluoro-Jade C staining of brains collected 24 h post-CSA revealed no neurodegeneration in any mouse that underwent CSA, whereas there was widespread neuronal death in brains from KA-SE mice. Finally, immunohistochemistry revealed acute seizure-induced astrogliosis (glial fibrillary acid protein; GFAP) in hippocampal structures, whereas hippocampal neuronal nuclei (NeuN) protein expression was only reduced in KA-SE mice. SIGNIFICANCE: We present a novel mouse model on which to further elucidate the mechanistic differences between sustained seizure emergencies (ie, SE and seizure clusters) to improve clinical interventions and define mechanisms of seizure termination.


Subject(s)
Emergencies , Status Epilepticus , Animals , Disease Models, Animal , Electroencephalography , Glial Fibrillary Acidic Protein , Humans , Kainic Acid , Mice , Pentylenetetrazole/toxicity , Seizures/chemically induced , Seizures/drug therapy , Status Epilepticus/chemically induced , Status Epilepticus/drug therapy
7.
Epilepsia Open ; 6(2): 431-436, 2021 06.
Article in English | MEDLINE | ID: mdl-34033257

ABSTRACT

Patients with epilepsy can experience diurnal seizure patterns. However, few studies in rodent models of temporal lobe epilepsy (TLE) routinely quantify the diurnal pattern of spontaneous recurrent seizures (SRS), and those that have conducted such assessments used small groups. This study thus aimed to define whether there was a diurnal pattern of SRS in the early phases of epileptogenesis in a large cohort (n = 40) of post-kainic acid (KA)-induced status epilepticus (SE) male Sprague Dawley rats. Rats were monitored by continuous 24/7 video-EEG in two-week epochs up to 6 weeks post-KA-induced SE. The total number of SRS by 6 weeks post-SE correlated to body weight at the time of SE insult (R2  = .1465, P = .0143). The total number of spontaneous behavioral and electrographic seizures, seizure severity, and seizure burden was recorded during lights ON (light) or lights OFF (dark) phases. All measures significantly increased with time post-SE; we detected significantly more seizures during the lights OFF phase of the post-SE monitoring periods. Moreover, a subset of rats demonstrated marked seizure preference in the lights OFF phase. Our study confirms that a diurnal pattern of SRS is variably detectable in early epileptogenesis in this model of TLE.


Subject(s)
Epilepsy, Temporal Lobe , Kainic Acid , Animals , Disease Models, Animal , Humans , Kainic Acid/adverse effects , Male , Rats , Rats, Sprague-Dawley , Seizures
8.
Neurochem Res ; 46(8): 1895-1912, 2021 Aug.
Article in English | MEDLINE | ID: mdl-33929683

ABSTRACT

Early-onset Alzheimer's disease (AD) is associated with variants in amyloid precursor protein (APP) and presenilin (PSEN) 1 and 2. It is increasingly recognized that patients with AD experience undiagnosed focal seizures. These AD patients with reported seizures may have worsened disease trajectory. Seizures in epilepsy can also lead to cognitive deficits, neuroinflammation, and neurodegeneration. Epilepsy is roughly three times more common in individuals aged 65 and older. Due to the numerous available antiseizure drugs (ASDs), treatment of seizures has been proposed to reduce the burden of AD. More work is needed to establish the functional impact of seizures in AD to determine whether ASDs could be a rational therapeutic strategy. The efficacy of ASDs in aged animals is not routinely studied, despite the fact that the elderly represents the fastest growing demographic with epilepsy. This leaves a particular gap in understanding the discrete pathophysiological overlap between hyperexcitability and aging, and AD more specifically. Most of our preclinical knowledge of hyperexcitability in AD has come from mouse models that overexpress APP. While these studies have been invaluable, other drivers underlie AD, e.g. PSEN2. A diversity of animal models should be more frequently integrated into the study of hyperexcitability in AD, which could be particularly beneficial to identify novel therapies. Specifically, AD-associated risk genes, in particular PSENs, altogether represent underexplored contributors to hyperexcitability. This review assesses the available studies of ASDs administration in clinical AD populations and preclinical studies with AD-associated models and offers a perspective on the opportunities for further therapeutic innovation.


Subject(s)
Alzheimer Disease/drug therapy , Anticonvulsants/therapeutic use , Epilepsy/drug therapy , Seizures/drug therapy , Aging/physiology , Alzheimer Disease/epidemiology , Alzheimer Disease/physiopathology , Animals , Comorbidity , Epilepsy/epidemiology , Epilepsy/physiopathology , Humans , Mutation , Presenilin-1/genetics , Presenilin-1/metabolism , Presenilin-2/genetics , Presenilin-2/metabolism , Seizures/epidemiology , Seizures/physiopathology
9.
Epilepsia ; 61(9): 2022-2034, 2020 09.
Article in English | MEDLINE | ID: mdl-32757210

ABSTRACT

OBJECTIVE: Initial identification of new investigational drugs for the treatment of epilepsy is commonly conducted in well-established mouse acute and chronic seizure models: for example, maximal electroshock (MES), 6 Hz, and corneal kindling. Comparison of the median effective dose (ED50) of approved antiseizure drugs (ASDs) vs investigational agents in these models provides evidence of their potential for clinical efficacy. Inbred and outbred mouse strains exhibit differential seizure susceptibility. However, few comparisons exist of the ED50 or median behaviorally impairing dose (TD50) of prototype ASDs in these models in inbred C57Bl/6 vs outbred CF-1 mice, both of which are often used for ASD discovery. METHODS: We defined the strain-related ED50s and TD50s of several mechanistically distinct ASDs across established acute seizure models (MES, 6 Hz, and corneal-kindled mouse). We further quantified the strain-related effect of the MES ED50 of each ASD on gross behavior in a locomotor activity assay. Finally, we describe a novel pharmacoresistant corneal-kindling protocol that is suitable for moderate-throughput ASD screening and demonstrates highly differentiated ASD sensitivity. RESULTS: We report significant strain-related differences in the MES ED50 of valproic acid (CF-1 ED50: 90 mg/kg [95% confidence interval (CI) 165-214] vs C57Bl/6: 276 mg/kg [226-366]), as well as significant differences in the ED50 of levetiracetam in the pharmacoresistant 6 Hz test (CF-1: 22.5 mg/kg [14.7-30.2] vs C57Bl/6: >500 mg/kg [CI not defined]). There were no differences in the calculated TD50 of these ASDs between strains. Furthermore, the MES ED50 of phenobarbital significantly enhanced locomotor activity of outbred CF-1, but not C57Bl/6, mice. SIGNIFICANCE: Altogether, this study provides strain-related information to differentiate investigational agents from ASD standards-of-care in commonly employed preclinical discovery models and describes a novel kindled seizure model to further explore the mechanisms of drug-resistant epilepsy.


Subject(s)
Animals, Outbred Strains , Anticonvulsants/pharmacology , Disease Models, Animal , Drug Resistant Epilepsy/physiopathology , Locomotion/drug effects , Mice, Inbred C57BL , Seizures/physiopathology , Animals , Anticonvulsants/therapeutic use , Behavior, Animal/drug effects , Brain/drug effects , Carbamazepine/pharmacology , Carbamazepine/therapeutic use , Cornea , Diazepam/pharmacology , Diazepam/therapeutic use , Dose-Response Relationship, Drug , Drug Discovery , Drug Evaluation, Preclinical , Drug Resistant Epilepsy/drug therapy , Electroshock , Kindling, Neurologic , Lamotrigine/pharmacology , Lamotrigine/therapeutic use , Levetiracetam/pharmacology , Levetiracetam/therapeutic use , Mice , Mice, Inbred Strains , Open Field Test , Phenobarbital/pharmacology , Phenobarbital/therapeutic use , Seizures/drug therapy , Treatment Outcome , Valproic Acid/pharmacology , Valproic Acid/therapeutic use
10.
J Pharmacol Exp Ther ; 371(1): 25-35, 2019 10.
Article in English | MEDLINE | ID: mdl-31375638

ABSTRACT

Methylcellulose (MC; 0.5% concentration) is commonly used when evaluating investigational agents for efficacy in preclinical models of disease. When administered by the oral (PO) route, MC is considered a Food and Drug Administration "generally recognized as safe" compound. Yet, there is limited data pertaining to the tolerability and impact on model fidelity of repeated intraperitoneal administration of 0.5% MC. Chronic administration of high-concentration MC (2%-2.5%) has been used to induce anemia, splenomegaly, and lesions in multiple organ systems in several preclinical species. Histopathological findings from a diagnostic pathologic analysis of a single mouse from our laboratory with experimentally induced chronic seizures that had received repeated intraperitoneal administration of antiseizure drugs delivered in MC revealed similar widespread lesions. This study thus tested the hypothesis that chronic administration of intraperitoneal, but not PO, MC incites histologic lesions without effects on preclinical phenotype. Male CF-1 mice (n = 2-14/group) were randomized to receive either 6 weeks of twice weekly 0.5% MC or saline (intraperitoneal or PO) following induction of chronic seizures. Histology of a subset of mice revealed lesions in kidney, liver, mediastinal lymph nodes, mesentery, aorta, and choroid plexus only in intraperitoneal MC-treated mice (n = 7/7). Kindled mice that received MC PO (n = 5) or saline (intraperitoneal n = 6, PO n = 3) had no lesions. There were no effects of intraperitoneal MC treatment on body weight, appearance, seizure stability, or behavior. Nonetheless, our findings suggest that repeated intraperitoneal, but not PO, MC elicits systemic organ damage without impacting the model phenotype, which may confound interpretation of investigational drug-induced histologic lesions. SIGNIFICANCE STATEMENT: Methylcellulose (0.5% concentration) is commonly used when evaluating investigational agents for efficacy in preclinical models of disease. Herein, we demonstrate that repeated administration of 0.5% methylcellulose by the intraperitoneal, but not oral, route results in systemic inflammation and presence of foam-laden macrophages but does not impact the behavioral phenotype of a rodent model of neurological disease.


Subject(s)
Injections, Intraperitoneal/adverse effects , Methylcellulose/adverse effects , Phenotype , Seizures/chemically induced , Animals , Aorta/drug effects , Choroid Plexus/drug effects , Drug Evaluation, Preclinical/methods , Drug Evaluation, Preclinical/standards , Female , Kidney/drug effects , Liver/drug effects , Lymph Nodes/drug effects , Male , Methylcellulose/administration & dosage , Methylcellulose/toxicity , Mice , Mice, Inbred C57BL
11.
Epilepsia ; 59(6): 1245-1256, 2018 06.
Article in English | MEDLINE | ID: mdl-29750337

ABSTRACT

OBJECTIVE: Despite numerous treatments for epilepsy, over 30% of patients remain resistant to available antiseizure drugs (ASDs). Thus, there is a strong need for more effective ASDs for these individuals. Early ASD discovery has historically relied on acute in vivo seizure models (maximal electroshock, subcutaneous pentylenetetrazol, 6 Hz), which lack the pathophysiology that defines chronic epilepsy. Etiologically relevant rodent models of pharmacoresistant epilepsy exist (eg, phenytoin (PHT)- and lamotrigine (LTG)-resistant amygdala-kindled rat and focal kainic acid mouse), but these models are resource- and labor-intensive and thus unsuitable for frontline ASD discovery. METHODS: We adapted the LTG-resistant amygdala-kindled rat protocol to the 60 Hz corneal-kindled mouse (CKM) to develop a medium-throughput model of pharmacoresistant chronic seizures. Male CF-1 mice were administered either vehicle (VEH; 0.5% methylcellulose) or LTG (8.5 mg/kg, ip) 30 minutes prior to each twice-daily corneal stimulation until mice achieved kindling criterion. Prototype ASDs were then evaluated in fully kindled mice. Compounds with specific mechanisms of action of interest to epilepsy (fluoxetine, minocycline, and celecoxib) were also evaluated. RESULTS: LTG did not modify kindling acquisition. A challenge dose of 17 mg/kg (ip) LTG did not block the secondarily generalized kindled seizure in LTG-kindled mice (mean seizure score [MSS] ± standard error of the mean: 5.67 ± 0.14), whereas VEH-treated mice were sensitive (MSS: 2.25 ± 0.30); confirming LTG-resistance. LTG-resistant CKM were also resistant to carbamazepine, retigabine, and valproic acid at doses that significantly reduced MSS in VEH-treated kindled mice. Fluoxetine, minocycline, and celecoxib were ineffective at the doses tested in either kindled cohort. Finally, the behavioral phenotype of LTG-resistant CKM was also characterized. CKM demonstrated exacerbated hyperexcitability and increased anxiety-like behavior in an open field relative to sham-kindled mice regardless of LTG sensitivity. SIGNIFICANCE: The pharmacoresistant LTG-resistant CKM provides an etiologically relevant moderate-throughput platform that is suitable for early compound discovery before advancing to more resource-intensive models of epilepsy.


Subject(s)
Anticonvulsants/adverse effects , Drug Discovery/methods , Drug Resistant Epilepsy/drug therapy , Epilepsies, Partial/drug therapy , Kindling, Neurologic , Lamotrigine/adverse effects , Animals , Anxiety/etiology , Body Weight/drug effects , Cornea/innervation , Cornea/physiopathology , Disease Models, Animal , Dose-Response Relationship, Drug , Epilepsies, Partial/complications , Epilepsies, Partial/etiology , Epilepsies, Partial/psychology , Male , Mice , Statistics, Nonparametric
SELECTION OF CITATIONS
SEARCH DETAIL