Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 38
Filter
Add more filters










Publication year range
1.
Malar J ; 23(1): 151, 2024 May 16.
Article in English | MEDLINE | ID: mdl-38755636

ABSTRACT

BACKGROUND: Sporozoite invasion of hepatocytes is an essential step in the Plasmodium life-cycle and has similarities, at the cellular level, to merozoite invasion of erythrocytes. In the case of the Plasmodium blood-stage, efforts to identify host-pathogen protein-protein interactions have yielded important insights including vaccine candidates. In the case of sporozoite-hepatocyte invasion, the host-pathogen protein-protein interactions involved are poorly understood. METHODS: To gain a better understanding of the protein-protein interaction between the sporozoite ligands and host receptors, a systematic screen was performed. The previous Plasmodium falciparum and human surface protein ectodomain libraries were substantially extended, resulting in the creation of new libraries comprising 88 P. falciparum sporozoite protein coding sequences and 182 sequences encoding human hepatocyte surface proteins. Having expressed recombinant proteins from these sequences, a plate-based assay was used, capable of detecting low affinity interactions between recombinant proteins, modified for enhanced throughput, to screen the proteins for interactions. The novel interactions identified in the screen were characterized biochemically, and their essential role in parasite invasion was further elucidated using antibodies and genetically manipulated Plasmodium parasites. RESULTS: A total of 7540 sporozoite-hepatocyte protein pairs were tested under conditions capable of detecting interactions of at least 1.2 µM KD. An interaction between the human fibroblast growth factor receptor 4 (FGFR4) and the P. falciparum protein Pf34 is identified and reported here, characterizing its affinity and demonstrating the blockade of the interaction by reagents, including a monoclonal antibody. Furthermore, further interactions between Pf34 and a second P. falciparum rhoptry neck protein, PfRON6, and between human low-density lipoprotein receptor (LDLR) and the P. falciparum protein PIESP15 are identified. Conditional genetic deletion confirmed the essentiality of PfRON6 in the blood-stage, consistent with the important role of this protein in parasite lifecycle. Pf34 was refractory to attempted genetic modification. Antibodies to Pf34 abrogated the interaction and had a modest effect upon sporozoite invasion into primary human hepatocytes. CONCLUSION: Pf34 and PfRON6 may be members of a functionally important invasion complex which could be a target for future interventions. The modified interaction screening assay, protein expression libraries and P. falciparum mutant parasites reported here may be a useful tool for protein interaction discovery and antigen candidate screening which could be of wider value to the scientific community.


Subject(s)
Hepatocytes , Plasmodium falciparum , Protozoan Proteins , Sporozoites , Plasmodium falciparum/genetics , Plasmodium falciparum/metabolism , Hepatocytes/parasitology , Humans , Sporozoites/metabolism , Protozoan Proteins/genetics , Protozoan Proteins/metabolism , Host-Pathogen Interactions , Membrane Proteins/genetics , Membrane Proteins/metabolism , Receptors, Cell Surface/genetics , Receptors, Cell Surface/metabolism , Host-Parasite Interactions , Protein Binding
2.
Nature ; 625(7995): 578-584, 2024 Jan.
Article in English | MEDLINE | ID: mdl-38123677

ABSTRACT

The symptoms of malaria occur during the blood stage of infection, when parasites invade and replicate within human erythrocytes. The PfPCRCR complex1, containing PfRH5 (refs. 2,3), PfCyRPA, PfRIPR, PfCSS and PfPTRAMP, is essential for erythrocyte invasion by the deadliest human malaria parasite, Plasmodium falciparum. Invasion can be prevented by antibodies3-6 or nanobodies1 against each of these conserved proteins, making them the leading blood-stage malaria vaccine candidates. However, little is known about how PfPCRCR functions during invasion. Here we present the structure of the PfRCR complex7,8, containing PfRH5, PfCyRPA and PfRIPR, determined by cryogenic-electron microscopy. We test the hypothesis that PfRH5 opens to insert into the membrane9, instead showing that a rigid, disulfide-locked PfRH5 can mediate efficient erythrocyte invasion. We show, through modelling and an erythrocyte-binding assay, that PfCyRPA-binding antibodies5 neutralize invasion through a steric mechanism. We determine the structure of PfRIPR, showing that it consists of an ordered, multidomain core flexibly linked to an elongated tail. We also show that the elongated tail of PfRIPR, which is the target of growth-neutralizing antibodies6, binds to the PfCSS-PfPTRAMP complex on the parasite membrane. A modular PfRIPR is therefore linked to the merozoite membrane through an elongated tail, and its structured core presents PfCyRPA and PfRH5 to interact with erythrocyte receptors. This provides fresh insight into the molecular mechanism of erythrocyte invasion and opens the way to new approaches in rational vaccine design.


Subject(s)
Erythrocytes , Malaria, Falciparum , Multiprotein Complexes , Parasites , Plasmodium falciparum , Protozoan Proteins , Animals , Humans , Antibodies, Neutralizing/immunology , Antigens, Protozoan/chemistry , Antigens, Protozoan/immunology , Cryoelectron Microscopy , Disulfides/chemistry , Disulfides/metabolism , Erythrocytes/metabolism , Erythrocytes/parasitology , Malaria Vaccines/immunology , Malaria, Falciparum/immunology , Malaria, Falciparum/metabolism , Malaria, Falciparum/parasitology , Malaria, Falciparum/pathology , Merozoites/metabolism , Multiprotein Complexes/chemistry , Multiprotein Complexes/immunology , Multiprotein Complexes/metabolism , Multiprotein Complexes/ultrastructure , Parasites/metabolism , Parasites/pathogenicity , Plasmodium falciparum/metabolism , Plasmodium falciparum/pathogenicity , Protozoan Proteins/chemistry , Protozoan Proteins/immunology , Protozoan Proteins/metabolism , Protozoan Proteins/ultrastructure
3.
Nat Microbiol ; 8(11): 2154-2169, 2023 Nov.
Article in English | MEDLINE | ID: mdl-37884813

ABSTRACT

Malaria-associated pathogenesis such as parasite invasion, egress, host cell remodelling and antigenic variation requires concerted action by many proteins, but the molecular regulation is poorly understood. Here we have characterized an essential Plasmodium-specific Apicomplexan AP2 transcription factor in Plasmodium falciparum (PfAP2-P; pathogenesis) during the blood-stage development with two peaks of expression. An inducible knockout of gene function showed that PfAP2-P is essential for trophozoite development, and critical for var gene regulation, merozoite development and parasite egress. Chromatin immunoprecipitation sequencing data collected at timepoints matching the two peaks of pfap2-p expression demonstrate PfAP2-P binding to promoters of genes controlling trophozoite development, host cell remodelling, antigenic variation and pathogenicity. Single-cell RNA sequencing and fluorescence-activated cell sorting revealed de-repression of most var genes in Δpfap2-p parasites. Δpfap2-p parasites also overexpress early gametocyte marker genes, indicating a regulatory role in sexual stage conversion. We conclude that PfAP2-P is an essential upstream transcriptional regulator at two distinct stages of the intra-erythrocytic development cycle.


Subject(s)
Malaria , Parasites , Plasmodium , Animals , Malaria/parasitology , Gene Expression Regulation , Plasmodium falciparum/genetics
4.
Nat Commun ; 14(1): 4619, 2023 08 01.
Article in English | MEDLINE | ID: mdl-37528099

ABSTRACT

Invasion of red blood cells (RBCs) by Plasmodium merozoites is critical to their continued survival within the host. Two major protein families, the Duffy binding-like proteins (DBPs/EBAs) and the reticulocyte binding like proteins (RBLs/RHs) have been studied extensively in P. falciparum and are hypothesized to have overlapping, but critical roles just prior to host cell entry. The zoonotic malaria parasite, P. knowlesi, has larger invasive merozoites and contains a smaller, less redundant, DBP and RBL repertoire than P. falciparum. One DBP (DBPα) and one RBL, normocyte binding protein Xa (NBPXa) are essential for invasion of human RBCs. Taking advantage of the unique biological features of P. knowlesi and iterative CRISPR-Cas9 genome editing, we determine the precise order of key invasion milestones and demonstrate distinct roles for each family. These distinct roles support a mechanism for phased commitment to invasion and can be targeted synergistically with invasion inhibitory antibodies.


Subject(s)
Malaria , Parasites , Plasmodium knowlesi , Animals , Humans , Carrier Proteins/metabolism , Parasites/metabolism , Malaria/parasitology , Plasmodium knowlesi/genetics , Plasmodium knowlesi/metabolism , Protozoan Proteins/metabolism , Erythrocytes/parasitology , Merozoites/metabolism , Plasmodium falciparum/genetics , Plasmodium falciparum/metabolism
5.
bioRxiv ; 2023 May 24.
Article in English | MEDLINE | ID: mdl-37293082

ABSTRACT

Malaria pathogenicity results from the parasite's ability to invade, multiply within and then egress from the host red blood cell (RBC). Infected RBCs are remodeled, expressing antigenic variant proteins (such as PfEMP1, coded by the var gene family) for immune evasion and survival. These processes require the concerted actions of many proteins, but the molecular regulation is poorly understood. We have characterized an essential Plasmodium specific Apicomplexan AP2 (ApiAP2) transcription factor in Plasmodium falciparum (PfAP2-MRP; Master Regulator of Pathogenesis) during the intraerythrocytic developmental cycle (IDC). An inducible gene knockout approach showed that PfAP2-MRP is essential for development during the trophozoite stage, and critical for var gene regulation, merozoite development and parasite egress. ChIP-seq experiments performed at 16 hour post invasion (h.p.i.) and 40 h.p.i. matching the two peaks of PfAP2-MRP expression, demonstrate binding of PfAP2-MRP to the promoters of genes controlling trophozoite development and host cell remodeling at 16 h.p.i. and antigenic variation and pathogenicity at 40 h.p.i. Using single-cell RNA-seq and fluorescence-activated cell sorting, we show de-repression of most var genes in Δpfap2-mrp parasites that express multiple PfEMP1 proteins on the surface of infected RBCs. In addition, the Δpfap2-mrp parasites overexpress several early gametocyte marker genes at both 16 and 40 h.p.i., indicating a regulatory role in the sexual stage conversion. Using the Chromosomes Conformation Capture experiment (Hi-C), we demonstrate that deletion of PfAP2-MRP results in significant reduction of both intra-chromosomal and inter-chromosomal interactions in heterochromatin clusters. We conclude that PfAP2-MRP is a vital upstream transcriptional regulator controlling essential processes in two distinct developmental stages during the IDC that include parasite growth, chromatin structure and var gene expression.

6.
Front Immunol ; 14: 1189587, 2023.
Article in English | MEDLINE | ID: mdl-37275870

ABSTRACT

Innate immune receptors that form complexes with secondary receptors, activating multiple signalling pathways, modulate cellular activation and play essential roles in regulating homeostasis and immunity. We have previously identified a variety of bovine C-type lectin-like receptors that possess similar functionality than their human orthologues. Mincle (CLEC4E), a heavily glycosylated monomer, is involved in the recognition of the mycobacterial component Cord factor (trehalose 6,6'-dimycolate). Here we characterise the bovine homologue of Mincle (boMincle), and demonstrate that the receptor is structurally and functionally similar to the human orthologue (huMincle), although there are some notable differences. In the absence of cross-reacting antibodies, boMincle-specific antibodies were created and used to demonstrate that, like the human receptor, boMincle is predominantly expressed by myeloid cells. BoMincle surface expression increases during the maturation of monocytes to macrophages. However, boMincle mRNA transcripts were also detected in granulocytes, B cells, and T cells. Finally, we show that boMincle binds to isolated bovine CD4+ T cells in a specific manner, indicating the potential to recognise endogenous ligands. This suggests that the receptor might also play a role in homeostasis in cattle.


Subject(s)
Cord Factors , Lectins, C-Type , Animals , Cattle , Lectins, C-Type/metabolism , Ligands , Receptors, Immunologic/metabolism , Signal Transduction
7.
Malar J ; 21(1): 302, 2022 Oct 27.
Article in English | MEDLINE | ID: mdl-36303209

ABSTRACT

BACKGROUND: The resistance of Plasmodium falciparum to artemisinin-based (ART) drugs, the front-line drug family used in artemisinin-based combination therapy (ACT) for treatment of malaria, is of great concern. Mutations in the kelch13 (k13) gene (for example, those resulting in the Cys580Tyr [C580Y] variant) were identified as genetic markers for ART-resistant parasites, which suggests they are associated with resistance mechanisms. However, not all resistant parasites contain a k13 mutation, and clearly greater understanding of resistance mechanisms is required. A genome-wide association study (GWAS) found single nucleotide polymorphisms associated with ART-resistance in fd (ferredoxin), arps10 (apicoplast ribosomal protein S10), mdr2 (multidrug resistance protein 2), and crt (chloroquine resistance transporter), in addition to k13 gene mutations, suggesting that these alleles contribute to the resistance phenotype. The importance of the FD and ARPS10 variants in ART resistance was then studied since both proteins likely function in the apicoplast, which is a location distinct from that of K13. METHODS: The reported mutations were introduced, together with a mutation to produce the k13-C580Y variant into the ART-sensitive 3D7 parasite line and the effect on ART-susceptibility using the 0-3 h ring survival assay (RSA0-3 h) was investigated. RESULTS AND CONCLUSION: Introducing both fd-D193Y and arps10-V127M into a k13-C580Y-containing parasite, but not a wild-type k13 parasite, increased survival of the parasite in the RSA0-3 h. The results suggest epistasis of arps10 and k13, with arps10-V127M a modifier of ART susceptibility in different k13 allele backgrounds.


Subject(s)
Antimalarials , Apicoplasts , Artemisinins , Malaria, Falciparum , Humans , Plasmodium falciparum , Antimalarials/pharmacology , Antimalarials/therapeutic use , Malaria, Falciparum/parasitology , Apicoplasts/metabolism , Genome-Wide Association Study , Drug Resistance/genetics , Protozoan Proteins/genetics , Protozoan Proteins/metabolism , Artemisinins/pharmacology , Artemisinins/therapeutic use , Mutation
8.
Sci Rep ; 11(1): 21791, 2021 11 08.
Article in English | MEDLINE | ID: mdl-34750454

ABSTRACT

The inducible Di-Cre system was used to delete the putative ubiquitin-conjugating enzyme 13 gene (ubc13) of Plasmodium falciparum to study its role in ubiquitylation and the functional consequence during the parasite asexual blood stage. Deletion resulted in a significant reduction of parasite growth in vitro, reduced ubiquitylation of the Lys63 residue of ubiquitin attached to protein substrates, and an increased sensitivity of the parasite to both the mutagen, methyl methanesulfonate and the antimalarial drug dihydroartemisinin (DHA), but not chloroquine. The parasite was also sensitive to the UBC13 inhibitor NSC697923. The data suggest that this gene does code for an ubiquitin conjugating enzyme responsible for K63 ubiquitylation, which is important in DNA repair pathways as was previously demonstrated in other organisms. The increased parasite sensitivity to DHA in the absence of ubc13 function indicates that DHA may act primarily through this pathway and that inhibitors of UBC13 may both enhance the efficacy of this antimalarial drug and directly inhibit parasite growth.


Subject(s)
Antimalarials/pharmacology , Artemisinins/pharmacology , Methyl Methanesulfonate/pharmacology , Mutagens/pharmacology , Plasmodium falciparum/drug effects , Protozoan Proteins/genetics , Ubiquitin-Conjugating Enzymes/genetics , DNA Damage/drug effects , Gene Knockdown Techniques , Humans , Nitrofurans/pharmacology , Plasmodium falciparum/genetics , Plasmodium falciparum/growth & development , Protein Structure, Tertiary , Sequence Alignment , Sulfones/pharmacology
9.
PLoS Biol ; 19(10): e3001408, 2021 10.
Article in English | MEDLINE | ID: mdl-34695132

ABSTRACT

We have combined chemical biology and genetic modification approaches to investigate the importance of protein myristoylation in the human malaria parasite, Plasmodium falciparum. Parasite treatment during schizogony in the last 10 to 15 hours of the erythrocytic cycle with IMP-1002, an inhibitor of N-myristoyl transferase (NMT), led to a significant blockade in parasite egress from the infected erythrocyte. Two rhoptry proteins were mislocalized in the cell, suggesting that rhoptry function is disrupted. We identified 16 NMT substrates for which myristoylation was significantly reduced by NMT inhibitor (NMTi) treatment, and, of these, 6 proteins were substantially reduced in abundance. In a viability screen, we showed that for 4 of these proteins replacement of the N-terminal glycine with alanine to prevent myristoylation had a substantial effect on parasite fitness. In detailed studies of one NMT substrate, glideosome-associated protein 45 (GAP45), loss of myristoylation had no impact on protein location or glideosome assembly, in contrast to the disruption caused by GAP45 gene deletion, but GAP45 myristoylation was essential for erythrocyte invasion. Therefore, there are at least 3 mechanisms by which inhibition of NMT can disrupt parasite development and growth: early in parasite development, leading to the inhibition of schizogony and formation of "pseudoschizonts," which has been described previously; at the end of schizogony, with disruption of rhoptry formation, merozoite development and egress from the infected erythrocyte; and at invasion, when impairment of motor complex function prevents invasion of new erythrocytes. These results underline the importance of P. falciparum NMT as a drug target because of the pleiotropic effect of its inhibition.


Subject(s)
Erythrocytes/parasitology , Myristic Acid/metabolism , Plasmodium falciparum/metabolism , Protozoan Proteins/metabolism , Acyltransferases/antagonists & inhibitors , Acyltransferases/metabolism , Animals , CRISPR-Cas Systems/genetics , Cell Survival/drug effects , Enzyme Inhibitors/pharmacology , Erythrocytes/drug effects , Lipoylation/drug effects , Merozoites/drug effects , Merozoites/metabolism , Parasites/drug effects , Parasites/growth & development , Plasmodium falciparum/drug effects , Plasmodium falciparum/enzymology , Plasmodium falciparum/ultrastructure , Solubility , Substrate Specificity/drug effects
10.
Sci Rep ; 11(1): 19183, 2021 09 28.
Article in English | MEDLINE | ID: mdl-34584166

ABSTRACT

Plasmodium falciparum, the parasite responsible for severe malaria, develops within erythrocytes. Merozoite invasion and subsequent egress of intraerythrocytic parasites are essential for this erythrocytic cycle, parasite survival and pathogenesis. In the present study, we report the essential role of a novel protein, P. falciparum Merozoite Surface Antigen 180 (PfMSA180), which is conserved across Plasmodium species and recently shown to be associated with the P. vivax merozoite surface. Here, we studied MSA180 expression, processing, localization and function in P. falciparum blood stages. Initially we examined its role in invasion, a process mediated by multiple ligand-receptor interactions and an attractive step for targeting with inhibitory antibodies through the development of a malaria vaccine. Using antibodies specific for different regions of PfMSA180, together with a parasite containing a conditional pfmsa180-gene knockout generated using CRISPR/Cas9 and DiCre recombinase technology, we demonstrate that this protein is unlikely to play a crucial role in erythrocyte invasion. However, deletion of the pfmsa180 gene resulted in a severe egress defect, preventing schizont rupture and blocking the erythrocytic cycle. Our study highlights an essential role of PfMSA180 in parasite egress, which could be targeted through the development of a novel malaria intervention strategy.


Subject(s)
Antigens, Protozoan/metabolism , Antigens, Surface/metabolism , Malaria, Falciparum/parasitology , Plasmodium falciparum/pathogenicity , Protozoan Proteins/metabolism , Animals , Antigens, Protozoan/genetics , Antigens, Surface/genetics , Disease Models, Animal , Erythrocytes/parasitology , Gene Knockout Techniques , Humans , Malaria Vaccines/therapeutic use , Malaria, Falciparum/blood , Malaria, Falciparum/immunology , Malaria, Falciparum/prevention & control , Merozoites/genetics , Merozoites/immunology , Merozoites/metabolism , Mice , Plasmodium falciparum/immunology , Plasmodium falciparum/metabolism , Protozoan Proteins/antagonists & inhibitors , Protozoan Proteins/genetics , Rabbits , Vaccine Development
11.
EMBO J ; 40(11): e107226, 2021 06 01.
Article in English | MEDLINE | ID: mdl-33932049

ABSTRACT

Malaria parasite egress from host erythrocytes (RBCs) is regulated by discharge of a parasite serine protease called SUB1 into the parasitophorous vacuole (PV). There, SUB1 activates a PV-resident cysteine protease called SERA6, enabling host RBC rupture through SERA6-mediated degradation of the RBC cytoskeleton protein ß-spectrin. Here, we show that the activation of Plasmodium falciparum SERA6 involves a second, autocatalytic step that is triggered by SUB1 cleavage. Unexpectedly, autoproteolytic maturation of SERA6 requires interaction in multimolecular complexes with a distinct PV-located protein cofactor, MSA180, that is itself a SUB1 substrate. Genetic ablation of MSA180 mimics SERA6 disruption, producing a fatal block in ß-spectrin cleavage and RBC rupture. Drug-like inhibitors of SERA6 autoprocessing similarly prevent ß-spectrin cleavage and egress in both P. falciparum and the emerging zoonotic pathogen P. knowlesi. Our results elucidate the egress pathway and identify SERA6 as a target for a new class of antimalarial drugs designed to prevent disease progression.


Subject(s)
Antimalarials/pharmacology , Cysteine Proteases/metabolism , Plasmodium falciparum/metabolism , Protease Inhibitors/pharmacology , Protozoan Proteins/metabolism , Cells, Cultured , Erythrocytes/metabolism , Erythrocytes/parasitology , Humans , Plasmodium falciparum/drug effects , Plasmodium falciparum/pathogenicity , Proteolysis , Protozoan Proteins/antagonists & inhibitors , Serine Proteases/metabolism , Spectrin/metabolism
12.
PLoS Pathog ; 15(9): e1008049, 2019 09.
Article in English | MEDLINE | ID: mdl-31491036

ABSTRACT

The malaria parasite Plasmodium falciparum invades, replicates within and destroys red blood cells in an asexual blood stage life cycle that is responsible for clinical disease and crucial for parasite propagation. Invasive malaria merozoites possess a characteristic apical complex of secretory organelles that are discharged in a tightly controlled and highly regulated order during merozoite egress and host cell invasion. The most prominent of these organelles, the rhoptries, are twinned, club-shaped structures with a body or bulb region that tapers to a narrow neck as it meets the apical prominence of the merozoite. Different protein populations localise to the rhoptry bulb and neck, but the function of many of these proteins and how they are spatially segregated within the rhoptries is unknown. Using conditional disruption of the gene encoding the only known glycolipid-anchored malarial rhoptry bulb protein, rhoptry-associated membrane antigen (RAMA), we demonstrate that RAMA is indispensable for blood stage parasite survival. Contrary to previous suggestions, RAMA is not required for trafficking of all rhoptry bulb proteins. Instead, RAMA-null parasites display selective mislocalisation of a subset of rhoptry bulb and neck proteins (RONs) and produce dysmorphic rhoptries that lack a distinct neck region. The mutant parasites undergo normal intracellular development and egress but display a fatal defect in invasion and do not induce echinocytosis in target red blood cells. Our results indicate that distinct pathways regulate biogenesis of the two main rhoptry sub-compartments in the malaria parasite.


Subject(s)
Erythrocytes/parasitology , Host-Parasite Interactions/physiology , Protozoan Proteins/metabolism , Antigens, Protozoan/immunology , Humans , Malaria/metabolism , Malaria, Falciparum/metabolism , Membrane Proteins/metabolism , Merozoites/metabolism , Organelles/metabolism , Plasmodium falciparum/metabolism , Protein Transport/physiology
13.
PLoS Pathog ; 15(6): e1007809, 2019 06.
Article in English | MEDLINE | ID: mdl-31185066

ABSTRACT

Malaria is caused by Plasmodium parasites, which invade and replicate in erythrocytes. For Plasmodium falciparum, the major cause of severe malaria in humans, a heterotrimeric complex comprised of the secreted parasite proteins, PfCyRPA, PfRIPR and PfRH5 is essential for erythrocyte invasion, mediated by the interaction between PfRH5 and erythrocyte receptor basigin (BSG). However, whilst CyRPA and RIPR are present in most Plasmodium species, RH5 is found only in the small Laverania subgenus. Existence of a complex analogous to PfRH5-PfCyRPA-PfRIPR targeting BSG, and involvement of CyRPA and RIPR in invasion, however, has not been addressed in non-Laverania parasites. Here, we establish that unlike P. falciparum, P. knowlesi and P. vivax do not universally require BSG as a host cell invasion receptor. Although we show that both PkCyRPA and PkRIPR are essential for successful invasion of erythrocytes by P. knowlesi parasites in vitro, neither protein forms a complex with each other or with an RH5-like molecule. Instead, PkRIPR is part of a different trimeric protein complex whereas PkCyRPA appears to function without other parasite binding partners. It therefore appears that in the absence of RH5, outside of the Laverania subgenus, RIPR and CyRPA have different, independent functions crucial for parasite survival.


Subject(s)
Basigin/metabolism , Malaria/metabolism , Multiprotein Complexes/metabolism , Plasmodium knowlesi/metabolism , Protozoan Proteins/metabolism , Basigin/genetics , Humans , Malaria/genetics , Multiprotein Complexes/genetics , Plasmodium falciparum/genetics , Plasmodium falciparum/metabolism , Plasmodium knowlesi/genetics , Plasmodium vivax/genetics , Plasmodium vivax/metabolism , Protozoan Proteins/genetics , Species Specificity
14.
Cell Chem Biol ; 26(7): 991-1000.e7, 2019 07 18.
Article in English | MEDLINE | ID: mdl-31080074

ABSTRACT

The attachment of myristate to the N-terminal glycine of certain proteins is largely a co-translational modification catalyzed by N-myristoyltransferase (NMT), and involved in protein membrane-localization. Pathogen NMT is a validated therapeutic target in numerous infectious diseases including malaria. In Plasmodium falciparum, NMT substrates are important in essential processes including parasite gliding motility and host cell invasion. Here, we generated parasites resistant to a particular NMT inhibitor series and show that resistance in an in vitro parasite growth assay is mediated by a single amino acid substitution in the NMT substrate-binding pocket. The basis of resistance was validated and analyzed with a structure-guided approach using crystallography, in combination with enzyme activity, stability, and surface plasmon resonance assays, allowing identification of another inhibitor series unaffected by this substitution. We suggest that resistance studies incorporated early in the drug development process help selection of drug combinations to impede rapid evolution of parasite resistance.


Subject(s)
Acyltransferases/genetics , Acyltransferases/metabolism , Acyltransferases/antagonists & inhibitors , Amino Acid Sequence , Antimalarials/chemistry , Enzyme Inhibitors/chemistry , Humans , Malaria, Falciparum/drug therapy , Plasmodium falciparum/drug effects , Plasmodium falciparum/metabolism , Polymorphism, Single Nucleotide/genetics , Protein Processing, Post-Translational
15.
J Biol Chem ; 292(43): 17857-17875, 2017 10 27.
Article in English | MEDLINE | ID: mdl-28893907

ABSTRACT

Myosin A (MyoA) is a Class XIV myosin implicated in gliding motility and host cell and tissue invasion by malaria parasites. MyoA is part of a membrane-associated protein complex called the glideosome, which is essential for parasite motility and includes the MyoA light chain myosin tail domain-interacting protein (MTIP) and several glideosome-associated proteins (GAPs). However, most studies of MyoA have focused on single stages of the parasite life cycle. We examined MyoA expression throughout the Plasmodium berghei life cycle in both mammalian and insect hosts. In extracellular ookinetes, sporozoites, and merozoites, MyoA was located at the parasite periphery. In the sexual stages, zygote formation and initial ookinete differentiation precede MyoA synthesis and deposition, which occurred only in the developing protuberance. In developing intracellular asexual blood stages, MyoA was synthesized in mature schizonts and was located at the periphery of segmenting merozoites, where it remained throughout maturation, merozoite egress, and host cell invasion. Besides the known GAPs in the malaria parasite, the complex included GAP40, an additional myosin light chain designated essential light chain (ELC), and several other candidate components. This ELC bound the MyoA neck region adjacent to the MTIP-binding site, and both myosin light chains co-located to the glideosome. Co-expression of MyoA with its two light chains revealed that the presence of both light chains enhances MyoA-dependent actin motility. In conclusion, we have established a system to study the interplay and function of the three glideosome components, enabling the assessment of inhibitors that target this motor complex to block host cell invasion.


Subject(s)
Life Cycle Stages/physiology , Membrane Proteins , Myosins , Plasmodium berghei , Plasmodium falciparum , Protozoan Proteins , Animals , Humans , Membrane Proteins/genetics , Membrane Proteins/metabolism , Mice , Myosins/genetics , Myosins/metabolism , Plasmodium berghei/genetics , Plasmodium berghei/metabolism , Plasmodium falciparum/genetics , Plasmodium falciparum/metabolism , Protozoan Proteins/genetics , Protozoan Proteins/metabolism
16.
Sci Rep ; 7(1): 3881, 2017 06 20.
Article in English | MEDLINE | ID: mdl-28634346

ABSTRACT

Successful establishment of CRISPR/Cas9 genome editing technology in Plasmodium spp. has provided a powerful tool to transform Plasmodium falciparum into a genetically more tractable organism. Conditional gene regulation approaches are required to study the function of gene products critical for growth and erythrocyte invasion of blood stage parasites. Here we employ CRISPR/Cas9 to facilitate use of the dimerisable Cre-recombinase (DiCre) that is frequently used to mediate the excision and loss of loxP-flanked DNA sequences in a rapamycin controlled manner. We describe novel CRISPR/Cas9 transfection plasmids and approaches for the speedy, stable and marker-free introduction of transgenes encoding the DiCre recombinase into genomic loci dispensable for blood stage development. Together these plasmids form a toolkit that will allow the rapid generation of transgenic DiCre-expressing P. falciparum lines in any genetic background. Furthermore, the newly developed 3D7-derived parasite lines, constitutively and stably expressing DiCre, generated using this toolkit will prove useful for the analysis of gene products. Lastly, we introduce an improved treatment protocol that uses a lower rapamycin concentration and shorter treatment times, leading to loxP-guided recombination with close to 100% efficiency within the same replication cycle.


Subject(s)
CRISPR-Cas Systems , Gene Expression , Integrases/genetics , Plasmodium/genetics , Animals , Animals, Genetically Modified , Gene Editing , Gene Knockout Techniques , Genes, Reporter , Genome, Protozoan , Plasmids/genetics , Plasmodium falciparum/genetics , Recombination, Genetic
17.
Elife ; 62017 03 02.
Article in English | MEDLINE | ID: mdl-28252384

ABSTRACT

Merozoites of the protozoan parasite responsible for the most virulent form of malaria, Plasmodium falciparum, invade erythrocytes. Invasion involves discharge of rhoptries, specialized secretory organelles. Once intracellular, parasites induce increased nutrient uptake by generating new permeability pathways (NPP) including a Plasmodium surface anion channel (PSAC). RhopH1/Clag3, one member of the three-protein RhopH complex, is important for PSAC/NPP activity. However, the roles of the other members of the RhopH complex in PSAC/NPP establishment are unknown and it is unclear whether any of the RhopH proteins play a role in invasion. Here we demonstrate that RhopH3, the smallest component of the complex, is essential for parasite survival. Conditional truncation of RhopH3 substantially reduces invasive capacity. Those mutant parasites that do invade are defective in nutrient import and die. Our results identify a dual role for RhopH3 that links erythrocyte invasion to formation of the PSAC/NPP essential for parasite survival within host erythrocytes.


Subject(s)
Endocytosis , Metabolic Networks and Pathways , Plasmodium falciparum/physiology , Protozoan Proteins/metabolism , Biological Transport , Cell Survival , Plasmodium falciparum/genetics , Sequence Deletion
18.
J Biol Chem ; 291(46): 24280-24292, 2016 Nov 11.
Article in English | MEDLINE | ID: mdl-27694132

ABSTRACT

StAR-related lipid transfer (START) domains are phospholipid- or sterol-binding modules that are present in many proteins. START domain-containing proteins (START proteins) play important functions in eukaryotic cells, including the redistribution of phospholipids to subcellular compartments and delivering sterols to the mitochondrion for steroid synthesis. How the activity of the START domain is regulated remains unknown for most of these proteins. The Plasmodium falciparum START protein PFA0210c (PF3D7_0104200) is a broad-spectrum phospholipid transfer protein that is conserved in all sequenced Plasmodium species and is most closely related to the mammalian START proteins STARD2 and STARD7. PFA0210c is unusual in that it contains a signal sequence and a PEXEL export motif that together mediate transfer of the protein from the parasite to the host erythrocyte. The protein also contains a C-terminal extension, which is very uncommon among mammalian START proteins. Whereas the biochemical properties of PFA0210c have been characterized, the function of the protein remains unknown. Here, we provide evidence that the unusual C-terminal extension negatively regulates phospholipid transfer activity. Furthermore, we use the genetically tractable Plasmodium knowlesi model and recently developed genetic technology in P. falciparum to show that the protein is essential for growth of the parasite during the clinically relevant asexual blood stage life cycle. Finally, we show that the regulation of phospholipid transfer by PFA0210c is required in vivo, and we identify a potential second regulatory domain. These findings provide insight into a novel mechanism of regulation of phospholipid transfer in vivo and may have important implications for the interaction of the malaria parasite with its host cell.


Subject(s)
Phospholipid Transfer Proteins/metabolism , Phospholipids/metabolism , Plasmodium falciparum/metabolism , Protozoan Proteins/metabolism , Biological Transport, Active/physiology , Phospholipid Transfer Proteins/genetics , Phospholipids/genetics , Plasmodium falciparum/genetics , Plasmodium knowlesi/genetics , Plasmodium knowlesi/metabolism , Protein Domains , Protozoan Proteins/genetics
19.
Proc Natl Acad Sci U S A ; 113(26): 7231-6, 2016 06 28.
Article in English | MEDLINE | ID: mdl-27303038

ABSTRACT

The dominant cause of malaria in Malaysia is now Plasmodium knowlesi, a zoonotic parasite of cynomolgus macaque monkeys found throughout South East Asia. Comparative genomic analysis of parasites adapted to in vitro growth in either cynomolgus or human RBCs identified a genomic deletion that includes the gene encoding normocyte-binding protein Xa (NBPXa) in parasites growing in cynomolgus RBCs but not in human RBCs. Experimental deletion of the NBPXa gene in parasites adapted to growth in human RBCs (which retain the ability to grow in cynomolgus RBCs) restricted them to cynomolgus RBCs, demonstrating that this gene is selectively required for parasite multiplication and growth in human RBCs. NBPXa-null parasites could bind to human RBCs, but invasion of these cells was severely impaired. Therefore, NBPXa is identified as a key mediator of P. knowlesi human infection and may be a target for vaccine development against this emerging pathogen.


Subject(s)
Carrier Proteins/genetics , Erythrocytes/parasitology , Plasmodium knowlesi/genetics , Plasmodium knowlesi/pathogenicity , Protozoan Proteins/genetics , Animals , Cells, Cultured , Humans , Macaca fascicularis , Macaca mulatta , Malaria , Polymorphism, Single Nucleotide , Zoonoses
20.
J Biol Chem ; 291(27): 14285-14299, 2016 Jul 01.
Article in English | MEDLINE | ID: mdl-27226583

ABSTRACT

Diversity at pathogen genetic loci can be driven by host adaptive immune selection pressure and may reveal proteins important for parasite biology. Population-based genome sequencing of Plasmodium falciparum, the parasite responsible for the most severe form of malaria, has highlighted two related polymorphic genes called dblmsp and dblmsp2, which encode Duffy binding-like (DBL) domain-containing proteins located on the merozoite surface but whose function remains unknown. Using recombinant proteins and transgenic parasites, we show that DBLMSP and DBLMSP2 directly and avidly bind human IgM via their DBL domains. We used whole genome sequence data from over 400 African and Asian P. falciparum isolates to show that dblmsp and dblmsp2 exhibit extreme protein polymorphism in their DBL domain, with multiple variants of two major allelic classes present in every population tested. Despite this variability, the IgM binding function was retained across diverse sequence representatives. Although this interaction did not seem to have an effect on the ability of the parasite to invade red blood cells, binding of DBLMSP and DBLMSP2 to IgM inhibited the overall immunoreactivity of these proteins to IgG from patients who had been exposed to the parasite. This suggests that IgM binding might mask these proteins from the host humoral immune system.


Subject(s)
Antigens, Protozoan/metabolism , Immunoglobulin M/metabolism , Plasmodium falciparum/metabolism , Protozoan Proteins/metabolism , Animals , Humans , Protein Binding
SELECTION OF CITATIONS
SEARCH DETAIL
...