Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 6 de 6
Filter
Add more filters










Database
Language
Publication year range
1.
Sci Rep ; 8(1): 17856, 2018 12 14.
Article in English | MEDLINE | ID: mdl-30552350

ABSTRACT

The Antarctic silverfish (Pleuragramma antarctica) is a critically important forage species with a circumpolar distribution and is unique among other notothenioid species for its wholly pelagic life cycle. Previous studies have provided mixed evidence of population structure over regional and circumpolar scales. The aim of the present study was to test the recent population hypothesis for Antarctic silverfish, which emphasizes the interplay between life history and hydrography in shaping connectivity. A total of 1067 individuals were collected over 25 years from different locations on a circumpolar scale. Samples were genotyped at fifteen microsatellites to assess population differentiation and genetic structuring using clustering methods, F-statistics, and hierarchical analysis of variance. A lack of differentiation was found between locations connected by the Antarctic Slope Front Current (ASF), indicative of high levels of gene flow. However, gene flow was significantly reduced at the South Orkney Islands and the western Antarctic Peninsula where the ASF is absent. This pattern of gene flow emphasized the relevance of large-scale circulation as a mechanism for circumpolar connectivity. Chaotic genetic patchiness characterized population structure over time, with varying patterns of differentiation observed between years, accompanied by heterogeneous standard length distributions. The present study supports a more nuanced version of the genetic panmixia hypothesis that reflects physical-biological interactions over the life history.


Subject(s)
Gene Flow , Genetics, Population , Genotype , Lepisma/genetics , Animals , Antarctic Regions , Cluster Analysis , Genotyping Techniques , Microsatellite Repeats
2.
J Exp Biol ; 221(Pt 21)2018 10 31.
Article in English | MEDLINE | ID: mdl-30190318

ABSTRACT

Polar cod (Boreogadus saida) is an important prey species in the Arctic ecosystem, yet its habitat is changing rapidly: climate change, through rising seawater temperatures and CO2 concentrations, is projected to be most pronounced in Arctic waters. This study aimed to investigate the influence of ocean acidification and warming on maximum performance parameters of B. saida as indicators for the species' acclimation capacities under environmental conditions projected for the end of this century. After 4 months at four acclimation temperatures (0, 3, 6, 8°C) each combined with two PCO2  levels (390 and 1170 µatm), aerobic capacities and swimming performance of B. saida were recorded following a Ucrit protocol. At both CO2 levels, standard metabolic rate (SMR) was elevated at the highest acclimation temperature indicating thermal limitations. Maximum metabolic rate (MMR) increased continuously with temperature, suggesting an optimum temperature for aerobic scope for exercise (ASex) at 6°C. Aerobic swimming performance (Ugait) increased with acclimation temperature irrespective of CO2 levels, while critical swimming speed (Ucrit) did not reveal any clear trend with temperature. Hypercapnia evoked an increase in MMR (and thereby ASex). However, swimming performance (both Ugait and Ucrit) was impaired under elevated near-future PCO2  conditions, indicating reduced efficiencies of oxygen turnover. The contribution of anaerobic metabolism to swimming performance was very low overall, and further reduced under hypercapnia. Our results revealed high sensitivities of maximum performance parameters (MMR, Ugait, Ucrit) of B. saida to ocean acidification. Impaired swimming capacity under ocean acidification may reflect reduced future competitive strength of B. saida.


Subject(s)
Gadiformes/physiology , Global Warming , Seawater/chemistry , Swimming/physiology , Acclimatization/physiology , Animals , Arctic Regions , Basal Metabolism/physiology , Carbon Dioxide/metabolism , Carbon Dioxide/pharmacology , Gadiformes/metabolism , Hydrogen-Ion Concentration , Hypercapnia/physiopathology , Temperature
3.
BMC Res Notes ; 9: 238, 2016 Apr 26.
Article in English | MEDLINE | ID: mdl-27112435

ABSTRACT

BACKGROUND: Loss of genetic variability due to environmental changes, limitation of gene flow between pools of individuals or putative selective pressure at specific markers, were previously documented for Antarctic notothenioid fish species. However, so far no studies were performed for the Gaudy notothen Lepidonotothen nudifrons. Starting from a species-specific spleen transcriptome library, we aimed at isolating polymorphic microsatellites (Type I; i.e. derived from coding sequences) suitable to quantify the genetic variability in this species, and additionally to assess the population genetic structure and demography in nototheniids. RESULTS: We selected 43,269 transcripts resulting from a MiSeq sequencer run, out of which we developed 19 primer pairs for sequences containing microsatellite repeats. Sixteen loci were successfully amplified in L. nudifrons. Eleven microsatellites were polymorphic and allele numbers per locus ranged from 2 to 17. In addition, we amplified loci identified from L. nudifrons in two other congeneric species (L. squamifrons and L. larseni). Thirteen loci were highly transferable to the two congeneric species. Differences in polymorphism among species were detected. CONCLUSIONS: Starting from a transcriptome of a non-model organism, we were able to identify promising polymorphic nuclear markers that are easily transferable to other closely related species. These markers can be a key instrument to monitor the genetic structure of the three Lepidonotothen species if genotyped in larger population samples. When compared with anonymous loci isolated in other notothenioids, i.e. Type II (isolated from genomic libraries), they offer the possibility to test how the effects of occurring environmental change influence the population genetic structure in each species and subsequently the composition of the entire ecosystem.


Subject(s)
Gene Expression Profiling/methods , Microsatellite Repeats/genetics , Perciformes/genetics , Polymorphism, Genetic , Transcriptome/genetics , Animals , Gene Frequency , Genotype , Perciformes/classification , Species Specificity , Spleen/metabolism
4.
Mar Genomics ; 24 Pt 3: 237-9, 2015 Dec.
Article in English | MEDLINE | ID: mdl-26112896

ABSTRACT

In this study, we describe a de novo sequencing and assembly of the spleen transcriptome of Lepidonotothen nudifrons, a notothenioid fish widely distributed around the Antarctic Peninsula and the Scotia Arc. Sequences were generated on an Illumina MiSeq system and assembled to a total of 112,477 transcripts. Putative functional annotation was possible for more than 34% of the transcripts. This data will be relevant for future studies targeting the erythrocyte turnover, oxygen transport mechanism and immune system, which are key functional traits to investigate cold adaptation and thermal sensitivity of Antarctic notothenioids.


Subject(s)
Perciformes/genetics , Perciformes/metabolism , Spleen/metabolism , Transcriptome , Animals , Nucleic Acid Amplification Techniques , RNA/genetics , RNA/metabolism
5.
J Exp Biol ; 218(Pt 15): 2373-81, 2015 Aug.
Article in English | MEDLINE | ID: mdl-26056241

ABSTRACT

As a response to ocean warming, shifts in fish species distribution and changes in production have been reported that have been partly attributed to temperature effects on the physiology of animals. The Southern Ocean hosts some of the most rapidly warming regions on earth and Antarctic organisms are reported to be especially temperature sensitive. While cellular and molecular organismic levels appear, at least partially, to compensate for elevated temperatures, the consequences of acclimation to elevated temperature for the whole organism are often less clear. Growth and reproduction are the driving factors for population structure and abundance. The aim of this study was to assess the effect of long-term acclimation to elevated temperature on energy budget parameters in the high-Antarctic fish Trematomus bernacchii. Our results show a complete temperature compensation for routine metabolic costs after 9 weeks of acclimation to 4°C. However, an up to 84% reduction in mass growth was measured at 2 and 4°C compared with the control group at 0°C, which is best explained by reduced food assimilation rates at warmer temperatures. With regard to a predicted temperature increase of up to 1.4°C in the Ross Sea by 2200, such a significant reduction in growth is likely to affect population structures in nature, for example by delaying sexual maturity and reducing production, with severe impacts on Antarctic fish communities and ecosystems.


Subject(s)
Acclimatization/physiology , Perciformes/metabolism , Temperature , Animals , Antarctic Regions , Basal Metabolism , Body Size , Body Weight , Climate Change , Eating/physiology , Perciformes/growth & development
6.
Science ; 315(5808): 95-7, 2007 Jan 05.
Article in English | MEDLINE | ID: mdl-17204649

ABSTRACT

A cause-and-effect understanding of climate influences on ecosystems requires evaluation of thermal limits of member species and of their ability to cope with changing temperatures. Laboratory data available for marine fish and invertebrates from various climatic regions led to the hypothesis that, as a unifying principle, a mismatch between the demand for oxygen and the capacity of oxygen supply to tissues is the first mechanism to restrict whole-animal tolerance to thermal extremes. We show in the eelpout, Zoarces viviparus, a bioindicator fish species for environmental monitoring from North and Baltic Seas (Helcom), that thermally limited oxygen delivery closely matches environmental temperatures beyond which growth performance and abundance decrease. Decrements in aerobic performance in warming seas will thus be the first process to cause extinction or relocation to cooler waters.


Subject(s)
Climate , Ecosystem , Oxygen/metabolism , Perciformes/physiology , Acclimatization , Aerobiosis , Animals , Blood Circulation , Body Size , North Sea , Oxygen/analysis , Oxygen/blood , Oxygen Consumption , Perciformes/growth & development , Population Dynamics , Population Growth , Seasons , Seawater/chemistry , Temperature
SELECTION OF CITATIONS
SEARCH DETAIL
...