Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 7 de 7
Filter
Add more filters










Database
Language
Publication year range
1.
Sci Rep ; 14(1): 2033, 2024 01 23.
Article in English | MEDLINE | ID: mdl-38263350

ABSTRACT

Rapid expansion of the pulmonary microvasculature through angiogenesis drives alveolarization, the final stage of lung development that occurs postnatally and dramatically increases lung gas-exchange surface area. Disruption of pulmonary angiogenesis induces long-term structural and physiologic lung abnormalities, including bronchopulmonary dysplasia, a disease characterized by compromised alveolarization. Although endothelial cells are primary determinants of pulmonary angiogenesis, mesenchymal cells (MC) play a critical and dual role in angiogenesis and alveolarization. Therefore, we performed single cell transcriptomics and in-situ imaging of the developing lung to profile mesenchymal cells during alveolarization and in the context of lung injury. Specific mesenchymal cell subtypes were present at birth with increasing diversity during alveolarization even while expressing a distinct transcriptomic profile from more mature correlates. Hyperoxia arrested the transcriptomic progression of the MC, revealed differential cell subtype vulnerability with pericytes and myofibroblasts most affected, altered cell to cell communication, and led to the emergence of Acta1 expressing cells. These insights hold the promise of targeted treatment for neonatal lung disease, which remains a major cause of infant morbidity and mortality across the world.


Subject(s)
Bronchopulmonary Dysplasia , Hyperoxia , Mesenchymal Stem Cells , Infant, Newborn , Infant , Humans , Endothelial Cells , Lung
2.
Am J Respir Cell Mol Biol ; 69(4): 470-483, 2023 10.
Article in English | MEDLINE | ID: mdl-37290124

ABSTRACT

Worldwide, the incidence of both preterm births and chronic lung disease of infancy, or bronchopulmonary dysplasia, remains high. Infants with bronchopulmonary dysplasia have larger and fewer alveoli, a lung pathology that can persist into adulthood. Although recent data point to a role for hypoxia-inducible factor-1α (HIF-1α) in mediating pulmonary angiogenesis and alveolarization, the cell-specific role of HIF-1α remains incompletely understood. Thus, we hypothesized that HIF-1α, in a distinct subset of mesenchymal cells, mediates postnatal alveolarization. To test the hypothesis, we generated mice with a cell-specific deletion of HIF-1α by crossing SM22α promoter-driven Cre mice with HIF-1αflox/flox mice (SM22α-HIF-1α-/-), determined SM-22α-expressing cell identity using single-cell RNA sequencing, and interrogated samples from preterm infants. Deletion of HIF-1α in SM22α-expressing cells had no effect on lung structure at day 3 of life. However, at 8 days, there were fewer and larger alveoli, a difference that persisted into adulthood. Microvascular density, elastin organization, and peripheral branching of the lung vasculature were decreased in SM22α-HIF-1α-/- mice, compared with control mice. Single-cell RNA sequencing demonstrated that three mesenchymal cell subtypes express SM22α: myofibroblasts, airway smooth muscle cells, and vascular smooth muscle cells. Pulmonary vascular smooth muscle cells from SM22α-HIF-1α-/- mice had decreased angiopoietin-2 expression and, in coculture experiments, a diminished capacity to promote angiogenesis that was rescued by angiopoietin-2. Angiopoietin-2 expression in tracheal aspirates of preterm infants was inversely correlated with overall mechanical ventilation time, a marker of disease severity. We conclude that SM22α-specific HIF-1α expression drives peripheral angiogenesis and alveolarization in the lung, perhaps by promoting angiopoietin-2 expression.


Subject(s)
Angiopoietin-2 , Bronchopulmonary Dysplasia , Hypoxia-Inducible Factor 1, alpha Subunit , Animals , Humans , Infant, Newborn , Mice , Angiopoietin-2/metabolism , Bronchopulmonary Dysplasia/genetics , Bronchopulmonary Dysplasia/metabolism , Bronchopulmonary Dysplasia/pathology , Hypoxia-Inducible Factor 1, alpha Subunit/genetics , Hypoxia-Inducible Factor 1, alpha Subunit/metabolism , Infant, Premature , Lung/pathology
3.
Am J Physiol Lung Cell Mol Physiol ; 325(3): L299-L313, 2023 09 01.
Article in English | MEDLINE | ID: mdl-37310763

ABSTRACT

Pulmonary angiogenesis drives alveolarization, but the transcriptional regulators directing pulmonary angiogenesis remain poorly defined. Global, pharmacological inhibition of nuclear factor-kappa B (NF-κB) impairs pulmonary angiogenesis and alveolarization. However, establishing a definitive role for NF-κB in pulmonary vascular development has been hindered by embryonic lethality induced by constitutive deletion of NF-κB family members. We created a mouse model allowing inducible deletion of the NF-κB activator, IKKß, in endothelial cells (ECs) and assessed the effect on lung structure, endothelial angiogenic function, and the lung transcriptome. Embryonic deletion of IKKß permitted lung vascular development but resulted in a disorganized vascular plexus, while postnatal deletion significantly decreased radial alveolar counts, vascular density, and proliferation of both endothelial and nonendothelial lung cells. Loss of IKKß impaired survival, proliferation, migration, and angiogenesis in primary lung ECs in vitro, in association with decreased expression of VEGFR2 and activation of downstream effectors. Loss of endothelial IKKß in vivo induced broad changes in the lung transcriptome with downregulation of genes related to mitotic cell cycle, extracellular matrix (ECM)-receptor interaction, and vascular development, and the upregulation of genes related to inflammation. Computational deconvolution suggested that loss of endothelial IKKß decreased general capillary, aerocyte capillary, and alveolar type I cell abundance. Taken together, these data definitively establish an essential role for endogenous endothelial IKKß signaling during alveolarization. A deeper understanding of the mechanisms directing this developmental, physiological activation of IKKß in the lung vasculature may provide novel targets for the development of strategies to enhance beneficial proangiogenic signaling in lung development and disease.NEW & NOTEWORTHY This study highlights the cell-specific complexity of nuclear factor kappa B signaling in the developing lung by demonstrating that inducible loss of IKKß in endothelial cells impairs alveolarization, disrupts EC angiogenic function, and broadly represses genes important for vascular development.


Subject(s)
I-kappa B Kinase , NF-kappa B , Animals , Mice , Endothelial Cells/metabolism , I-kappa B Kinase/genetics , I-kappa B Kinase/metabolism , Lung/metabolism , Neovascularization, Physiologic/genetics , NF-kappa B/metabolism , Pulmonary Alveoli/metabolism , Vascular Endothelial Growth Factor Receptor-2/genetics , Vascular Endothelial Growth Factor Receptor-2/metabolism
4.
Eur Respir J ; 61(6)2023 06.
Article in English | MEDLINE | ID: mdl-37024132

ABSTRACT

INTRODUCTION: Pulmonary arterial hypertension (PAH) is characterised by loss of microvessels. The Wnt pathways control pulmonary angiogenesis but their role in PAH is incompletely understood. We hypothesised that Wnt activation in pulmonary microvascular endothelial cells (PMVECs) is required for pulmonary angiogenesis, and its loss contributes to PAH. METHODS: Lung tissue and PMVECs from healthy and PAH patients were screened for Wnt production. Global and endothelial-specific Wnt7a -/- mice were generated and exposed to chronic hypoxia and Sugen-hypoxia (SuHx). RESULTS: Healthy PMVECs demonstrated >6-fold Wnt7a expression during angiogenesis that was absent in PAH PMVECs and lungs. Wnt7a expression correlated with the formation of tip cells, a migratory endothelial phenotype critical for angiogenesis. PAH PMVECs demonstrated reduced vascular endothelial growth factor (VEGF)-induced tip cell formation as evidenced by reduced filopodia formation and motility, which was partially rescued by recombinant Wnt7a. We discovered that Wnt7a promotes VEGF signalling by facilitating Y1175 tyrosine phosphorylation in vascular endothelial growth factor receptor 2 (VEGFR2) through receptor tyrosine kinase-like orphan receptor 2 (ROR2), a Wnt-specific receptor. We found that ROR2 knockdown mimics Wnt7a insufficiency and prevents recovery of tip cell formation with Wnt7a stimulation. While there was no difference between wild-type and endothelial-specific Wnt7a -/- mice under either chronic hypoxia or SuHx, global Wnt7a +/- mice in hypoxia demonstrated higher pulmonary pressures and severe right ventricular and lung vascular remodelling. Similar to PAH, Wnt7a +/- PMVECs exhibited an insufficient angiogenic response to VEGF-A that improved with Wnt7a. CONCLUSIONS: Wnt7a promotes VEGF signalling in lung PMVECs and its loss is associated with an insufficient VEGF-A angiogenic response. We propose that Wnt7a deficiency contributes to progressive small vessel loss in PAH.


Subject(s)
Pulmonary Arterial Hypertension , Mice , Animals , Pulmonary Arterial Hypertension/complications , Vascular Endothelial Growth Factor A/metabolism , Endothelial Cells/metabolism , Familial Primary Pulmonary Hypertension/metabolism , Hypoxia/metabolism
5.
iScience ; 26(3): 106097, 2023 Mar 17.
Article in English | MEDLINE | ID: mdl-36879800

ABSTRACT

At birth, the lung is still immature, heightening susceptibility to injury but enhancing regenerative capacity. Angiogenesis drives postnatal lung development. Therefore, we profiled the transcriptional ontogeny and sensitivity to injury of pulmonary endothelial cells (EC) during early postnatal life. Although subtype speciation was evident at birth, immature lung EC exhibited transcriptomes distinct from mature counterparts, which progressed dynamically over time. Gradual, temporal changes in aerocyte capillary EC (CAP2) contrasted with more marked alterations in general capillary EC (CAP1) phenotype, including distinct CAP1 present only in the early alveolar lung expressing Peg3, a paternally imprinted transcription factor. Hyperoxia, an injury that impairs angiogenesis induced both common and unique endothelial gene signatures, dysregulated capillary EC crosstalk, and suppressed CAP1 proliferation while stimulating venous EC proliferation. These data highlight the diversity, transcriptomic evolution, and pleiotropic responses to injury of immature lung EC, possessing broad implications for lung development and injury across the lifespan.

6.
Toxicol Sci ; 168(2): 430-442, 2019 04 01.
Article in English | MEDLINE | ID: mdl-30561685

ABSTRACT

Deiodinase enzymes play an essential role in converting thyroid hormones between active and inactive forms by deiodinating the pro-hormone thyroxine (T4) to the active hormone triiodothyronine (T3) and modifying T4 and T3 to inactive forms. Chemical inhibition of deiodinase activity has been identified as an important endpoint to include in screening chemicals for thyroid hormone disruption. To address the lack of data regarding chemicals that inhibit the deiodinase enzymes, we developed robust in vitro assays that utilized human deiodinase types 1, 2, and 3 and screened over 1800 unique chemicals from the U.S. EPA's ToxCast phase 1_v2, phase 2, and e1k libraries. Initial testing at a single concentration identified 411 putative deiodinase inhibitors that produced inhibition of 20% or greater in at least 1 of the 3 deiodinase assays, including chemicals that have not previously been shown to inhibit deiodinases. Of these, 228 chemicals produced enzyme inhibition of 50% or greater; these chemicals were further tested in concentration-response to determine relative potency. Comparisons across these deiodinase assays identified 81 chemicals that produced selective inhibition, with 50% inhibition or greater of only 1 of the deiodinases. This set of 3 deiodinase inhibition assays provides a significant contribution toward expanding the limited number of in vitro assays used to identify chemicals with the potential to interfere with thyroid hormone homeostasis. In addition, these results set the groundwork for development and evaluation of structure-activity relationships for deiodinase inhibition, and inform targeted selection of chemicals for further testing to identify adverse outcomes of deiodinase inhibition.


Subject(s)
Enzyme Inhibitors/toxicity , Iodide Peroxidase/antagonists & inhibitors , Small Molecule Libraries/toxicity , Adenoviridae/enzymology , Biological Assay , Dose-Response Relationship, Drug , HEK293 Cells , Humans , Inhibitory Concentration 50 , Iodide Peroxidase/genetics , Iodides/analysis , Transfection , Iodothyronine Deiodinase Type II
7.
Toxicol Sci ; 162(2): 570-581, 2018 04 01.
Article in English | MEDLINE | ID: mdl-29228274

ABSTRACT

Thyroid hormone (TH) homeostasis is dependent upon coordination of multiple key events including iodide uptake, hormone synthesis, metabolism, and elimination, to maintain proper TH signaling. Deiodinase enzymes catalyze iodide release from THs to interconvert THs between active and inactive forms, and are integral to hormone metabolism. The activity of deiodinases has been identified as an important endpoint to include in the context of screening chemicals for TH disruption. To begin to address the potential for chemicals to inhibit these enzymes an adenovirus expression system was used to produce human deiodinase type 1 (DIO1) enzyme, established robust assay parameters for nonradioactive determination of iodide release by the Sandell-Kolthoff method, and employed a 96-well plate format for screening chemical libraries. An initial set of 18 chemicals was used to establish the assay, along with the known DIO1 inhibitor 6-propylthiouracil as a positive control. An additional 292 unique chemicals from the EPA's ToxCast phase 1_v2 chemical library were screened. Chemicals were initially screened at a single high concentration of 200 µM to identify potential DIO1 inhibitors. There were 50 chemicals, or 17% of the TCp1_v2 chemicals tested, that produced >20% inhibition of DIO1 activity. Eighteen of these inhibited DIO1 activity >50% and were further tested in concentration-response mode to determine IC50s. This work presents an initial effort toward identifying chemicals with potential for affecting THs via inhibition of deiodinases and sets the foundation for further testing of large chemical libraries against DIO1 and the other deiodinase enzymes involved in TH function.


Subject(s)
DNA-Binding Proteins/antagonists & inhibitors , Iodides/metabolism , Small Molecule Libraries/toxicity , Adenoviridae/genetics , Biological Assay , DNA-Binding Proteins/genetics , Dose-Response Relationship, Drug , HEK293 Cells , Humans , Inhibitory Concentration 50 , Plasmids
SELECTION OF CITATIONS
SEARCH DETAIL
...