Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 80
Filter
Add more filters










Publication year range
1.
Biol Reprod ; 2024 May 13.
Article in English | MEDLINE | ID: mdl-38738783

ABSTRACT

Cryptorchidism, the failure of one or both testes to descend into the scrotum, and testicular cancer show a strong correlation in both dogs and humans. Yet, long-standing medical debates persist about whether the location of undescended testes directly causes testicular cancer in humans or if both conditions stem from a common origin. Although testicular cancer is a prevalent disease in dogs, even less is known about its cause and correlation with testicular descent in this species. This review investigates the relation between these two disorders in dogs, drawing insights from human studies, and examines key biomarkers identified thus far. In addition, it explores potential causal links, including the impact of temperature on maturing testicular cells and a potential shared genetic origin. Notably, this literature review reveals significant differences between men and dogs in reproductive development, histological and molecular features of testicular tumors, and the prevalence of specific tumor types, such as Sertoli cell tumors (SCTs) in cryptorchid dogs and germ cell tumors (GCTs) in humans. These disparities caution against using dogs as models for human testicular cancer research and underscore the limitations when drawing comparisons between species. The paper concludes by suggesting specific research initiatives to enhance our understanding of the complex interplay between cryptorchidism and testicular cancer in dogs.

2.
Biol Reprod ; 110(5): 1025-1037, 2024 May 09.
Article in English | MEDLINE | ID: mdl-38381622

ABSTRACT

Prenatal exposure to Di (2-ethylhexyl) phthalate (DEHP) impairs the reproductive system and causes fertility defects in male offspring. Additionally, high-fat (HF) diet is a risk factor for reproductive disorders in males. In this study, we tested the hypothesis that prenatal exposure to a physiologically relevant dose of DEHP in conjunction with HF diet synergistically impacts reproductive function and fertility in male offspring. Female mice were fed a control or HF diet 7 days prior to mating and until their litters were weaned on postnatal day 21. Pregnant dams were exposed to DEHP or vehicle from gestational day 10.5 until birth. The male offspring's gross phenotype, sperm quality, serum hormonal levels, testicular histopathology, and testicular gene expression pattern were analyzed. Male mice born to dams exposed to DEHP + HF had smaller testes, epididymides, and shorter anogenital distance compared with those exposed to HF or DEHP alone. DEHP + HF mice had lower sperm concentration and motility compared with DEHP mice. Moreover, DEHP + HF mice had more apoptotic germ cells, fewer Leydig cells, and lower serum testosterone levels than DEHP mice. Furthermore, testicular mRNA expression of Dnmt1 and Dnmt3a was two to eight-fold higher than in DEHP mice by qPCR, suggesting that maternal HF diet and prenatal DEHP exposure additively impact gonadal function by altering the degree of DNA methylation in the testis. These results suggest that the combined exposure to DEHP and high-fat synergistically impairs reproductive function in male offspring, greater than exposure to DEHP or HF diet alone.


Subject(s)
Diet, High-Fat , Diethylhexyl Phthalate , Prenatal Exposure Delayed Effects , Testis , Animals , Female , Male , Diethylhexyl Phthalate/toxicity , Mice , Pregnancy , Prenatal Exposure Delayed Effects/chemically induced , Diet, High-Fat/adverse effects , Testis/drug effects , Testis/pathology , Spermatozoa/drug effects
3.
Sci Rep ; 13(1): 9627, 2023 06 14.
Article in English | MEDLINE | ID: mdl-37316510

ABSTRACT

Reproductive sterilization by surgical gonadectomy is strongly advocated to help manage animal populations, especially domesticated pets, and to prevent reproductive behaviors and diseases. This study explored the use of a single-injection method to induce sterility in female animals as an alternative to surgical ovariohysterectomy. The idea was based on our recent finding that repetitive daily injection of estrogen into neonatal rats disrupted hypothalamic expression of Kisspeptin (KISS1), the neuropeptide that triggers and regulates pulsatile secretion of GnRH. Neonatal female rats were dosed with estradiol benzoate (EB) either by daily injections for 11 days or by subcutaneous implantation of an EB-containing silicone capsule designed to release EB over 2-3 weeks. Rats treated by either method did not exhibit estrous cyclicity, were anovulatory, and became infertile. The EB-treated rats had fewer hypothalamic Kisspeptin neurons, but the GnRH-LH axis remained responsive to Kisspeptin stimulation. Because it would be desirable to use a biodegradable carrier that is also easier to handle, an injectable EB carrier was developed from PLGA microspheres to provide pharmacokinetics comparable to the EB-containing silicone capsule. A single neonatal injection of EB-microspheres at an equivalent dosage resulted in sterility in the female rat. In neonatal female Beagle dogs, implantation of an EB-containing silicone capsule also reduced ovarian follicle development and significantly inhibited KISS1 expression in the hypothalamus. None of the treatments produced any concerning health effects, other than infertility. Therefore, further development of this technology for sterilization in domestic female animals, such as dogs and cats is worthy of investigation.


Subject(s)
Cat Diseases , Dog Diseases , Infertility , Female , Animals , Cats , Dogs , Rats , Kisspeptins/pharmacology , Hypothalamus , Gonadotropin-Releasing Hormone , Animals, Domestic , Sterilization , Estrogens/pharmacology
4.
EMBO Rep ; 24(3): e54228, 2023 03 06.
Article in English | MEDLINE | ID: mdl-36633157

ABSTRACT

Estrogen is a disease-modifying factor in multiple sclerosis (MS) and its animal model experimental autoimmune encephalomyelitis (EAE) via estrogen receptor alpha (ERα). However, the mechanisms by which ERα signaling contributes to changes in disease pathogenesis have not been completely elucidated. Here, we demonstrate that ERα deletion in dendritic cells (DCs) of mice induces severe neurodegeneration in the central nervous system in a mouse EAE model and resistance to interferon beta (IFNß), a first-line MS treatment. Estrogen synthesized by extragonadal sources is crucial for controlling disease phenotypes. Mechanistically, activated ERα directly interacts with TRAF3, a TLR4 downstream signaling molecule, to degrade TRAF3 via ubiquitination, resulting in reduced IRF3 nuclear translocation and transcription of membrane lymphotoxin (mLT) and IFNß components. Diminished ERα signaling in DCs generates neurotoxic effector CD4+ T cells via mLT-lymphotoxin beta receptor (LTßR) signaling. Lymphotoxin beta receptor antagonist abolished EAE disease symptoms in the DC-specific ERα-deficient mice. These findings indicate that estrogen derived from extragonadal sources, such as lymph nodes, controls TRAF3-mediated cytokine production in DCs to modulate the EAE disease phenotype.


Subject(s)
Encephalomyelitis, Autoimmune, Experimental , Estrogen Receptor alpha , Mice , Animals , Estrogen Receptor alpha/genetics , Estrogen Receptor alpha/metabolism , Lymphotoxin beta Receptor/genetics , Lymphotoxin beta Receptor/metabolism , TNF Receptor-Associated Factor 3/genetics , TNF Receptor-Associated Factor 3/metabolism , Estrogens/pharmacology , Phenotype , Dendritic Cells/metabolism , Mice, Inbred C57BL
5.
Front Physiol ; 13: 991719, 2022.
Article in English | MEDLINE | ID: mdl-36060690

ABSTRACT

KRAS plays critical roles in regulating a range of normal cellular events as well as pathological processes in many tissues mediated through a variety of signaling pathways, including ERK1/2 and AKT signaling, in a cell-, context- and development-dependent manner. The in vivo function of KRAS and its downstream targets in gonadal steroidogenic cells for the development and homeostasis of reproductive functions remain to be determined. To understand the functions of KRAS signaling in gonadal theca and interstitial cells, we generated a Kras mutant (tKrasMT) mouse line that selectively expressed a constitutively active Kras G12D in these cells. Kras G12D expression in ovarian theca cells did not block follicle development to the preovulatory stage. However, tKrasMT females failed to ovulate and thus were infertile. The phosphorylated ERK1/2 and forkhead box O1 (FOXO1) and total FOXO1 protein levels were markedly reduced in tKrasMT theca cells. Kras G12D expression in theca cells also curtailed the phosphorylation of ERK1/2 and altered the expression of several ovulation-related genes in gonadotropin-primed granulosa cells. To uncover downstream targets of KRAS/FOXO1 signaling in theca cells, we found that the expression of bone morphogenic protein 7 (Bmp7), a theca-specific factor involved in ovulation, was significantly elevated in tKrasMT theca cells. Chromosome immunoprecipitation assays demonstrated that FOXO1 interacted with the Bmp7 promoter containing forkhead response elements and that the binding activity was attenuated in tKrasMT theca cells. Moreover, Foxo1 knockdown caused an elevation, whereas Foxo1 overexpression resulted in an inhibition of Bmp7 expression, suggesting that KRAS signaling regulates FOXO1 protein levels to control Bmp7 expression in theca cells. Thus, the anovulation phenotype observed in tKrasMT mice may be attributed to aberrant KRAS/FOXO1/BMP7 signaling in theca cells. Our work provides the first in vivo evidence that maintaining normal KRAS activity in ovarian theca cells is crucial for ovulation and female fertility.

6.
Clin Exp Reprod Med ; 49(1): 16-25, 2022 Mar.
Article in English | MEDLINE | ID: mdl-35255655

ABSTRACT

In mammalian species, females are born with a number of oocytes exceeding what they release via ovulation. In humans, an average girl is born with over a thousand times more oocytes than she will ovulate in her lifetime. The reason for having such an excessive number of oocytes in a neonatal female ovary is currently unknown. However, it is well established that the oocyte number decreases throughout the entire lifetime until the ovary loses them all. In this review, data published in the past 80 years were used to assess the current knowledge regarding the changing number of oocytes in humans and mice, as well as the reported factors that contribute to the decline of oocyte numbers. Briefly, a collective estimation indicates that an average girl is born with approximately 600,000 oocytes, which is 2,000 times more than the number of oocytes that she will ovulate in her lifetime. The oocyte number begins to decrease immediately after birth and is reduced to half of the initial number by puberty and almost zero by age 50 years. Multiple factors that are either intrinsic or extrinsic to the ovary contribute to the decline of the oocyte number. The inflammation caused by the ovulatory luteinizing hormone surge is discussed as a potential contributing factor to the decline of the oocyte pool during the reproductive lifespan.

7.
Reproduction ; 163(4): R71-R80, 2022 03 05.
Article in English | MEDLINE | ID: mdl-35167488

ABSTRACT

Ovulation is the fundamental biological process during which an oocyte is expelled from the ovary, and it is an essential step toward establishing a pregnancy. Understanding regulatory mechanisms governing the ovulation process is essential for diagnosing and treating causes of infertility, identifying contraceptive targets, and developing novel contraception methods. Endothelin-2 (EDN2) is a 21 amino acid-long peptide that is transiently synthesized by granulosa cells of the ovulatory follicle prior to ovulation and plays an essential role in ovulation via promoting contraction in the myofibroblast cells of the theca layer of the follicle. This review describes the organization of the endothelin system, summarizes recent findings on the expression and synthesis of the endothelin system in the ovary, illustrates the roles that EDN2 plays in regulating ovulation, and discusses EDN2 as a potential target of contraception.


Subject(s)
Endothelin-2 , Ovulation , Endothelin-2/genetics , Endothelin-2/metabolism , Female , Fertility , Granulosa Cells/metabolism , Humans , Ovarian Follicle/metabolism , Pregnancy
8.
Kobe J Med Sci ; 67(2): E61-E70, 2021 Nov 02.
Article in English | MEDLINE | ID: mdl-34795157

ABSTRACT

Initially, endothelin (ET)-2 was described as an endothelium-derived vasoconstrictor. However, accumulating evidence suggests the involvement of ET-2 in non-cardiovascular physiology and disease pathophysiology. The deficiency of ET-2 in mice can be lethal, and such mice exhibit a distinct developmental abnormality in the lungs. Nonetheless, the definite role of ET-2 in the lungs remains unclear. The ET-2 isoform, ET-1, promotes pulmonary fibrosis in mice. Although endothelin receptor antagonists (ERAs) show improvements in bleomycin-induced pulmonary fibrosis in mouse models, clinical trials examining ERAs for pulmonary fibrosis treatment have been unsuccessful, even showing harmful effects in patients. We hypothesized that ET-2, which activates the same receptor as ET-1, plays a distinct role in pulmonary fibrosis. In this study, we showed that ET-2 is expressed in the lung epithelium, and ET-2 deletion in epithelial cells of mice results in the exacerbation of bleomycin-induced pulmonary fibrosis. ET-2 knockdown in lung epithelial cell lines resulted in increased apoptosis mediated via oxidative stress induction. In contrast to the effects of ET-1, which induced fibroblast activation, ET-2 hampered fibroblast activation in primary mouse lung fibroblast cells by inhibiting the TGF-ß-SMAD2/3 pathway. Our results demonstrated the divergent roles of ET-1 and ET-2 in pulmonary fibrosis pathophysiology and suggested that ET-2, expressed in epithelial cells, exerts protective effects against the development of pulmonary fibrosis in mice.


Subject(s)
Bleomycin/toxicity , Endothelin-2/metabolism , Lung/metabolism , Pulmonary Fibrosis/chemically induced , Pulmonary Fibrosis/metabolism , Animals , Bleomycin/administration & dosage , Epithelial Cells , Epithelium/metabolism , Epithelium/pathology , Lung/pathology , Mice , Transforming Growth Factor beta/metabolism
9.
J Transl Med ; 19(1): 428, 2021 10 15.
Article in English | MEDLINE | ID: mdl-34654452

ABSTRACT

BACKGROUND: In the ovarian follicle, the Theca Cells (TCs) have two main functions: preserving morphological integrity and, importantly, secreting steroid androgen hormones. TCs express the essential enzyme 17α-hydroxylase/17,20-desmolase (CYP17), which permits the conversion of pregnenolone and progesterone into androgens. Dysregulation of CYP17 enzyme activity due to an intrinsic ovarian defect is hypothesized to be a cause of hyperandrogenism in women. Androgen excess is observed in women with polycystic ovary syndrome (PCOS) resulting from excess endogenous androgen production, and in transgender males undergoing exogenous testosterone therapy after female sex assignment at birth. However, the molecular and morphological effects of Cyp17 overexpression and androgen excess on folliculogenesis is unknown. METHODS: In this work, seeking a comprehensive profiling of the local outcomes of the androgen excess in the ovary, we generated a transgenic mouse model (TC17) with doxycycline (Dox)-induced Cyp17 overexpression in a local and temporal manner. TC17 mice were obtained by a combination of the Tet-dependent expression system and the Cre/LoxP gene control system. RESULTS: Ovaries of Dox-treated TC17 mice overexpressed Cyp17 specifically in TCs, inducing high testosterone levels. Surprisingly, TC17 ovarian morphology resembled the human ovarian features of testosterone-treated transgender men (partially impaired folliculogenesis, hypertrophic or luteinized stromal cells, atretic follicles, and collapsed clusters). We additionally assessed TC17 fertility denoting a perturbation of the normal reproductive functions (e.g., low pregnancy rate and numbers of pups per litter). Finally, RNAseq analysis permitted us to identify dysregulated genes (Lhcgr, Fshr, Runx1) and pathways (Extra Cellular Matrix and Steroid Synthesis). CONCLUSIONS: Our novel mouse model is a versatile tool to provide innovative insights into study the effects of Cyp17 overexpression and hyperandrogenism in the ovary.


Subject(s)
Polycystic Ovary Syndrome , Theca Cells , Androgens/pharmacology , Animals , Cytochrome P450 Family 17 , Female , Humans , Male , Mice , Phenotype , Steroid 17-alpha-Hydroxylase/genetics
10.
Reprod Toxicol ; 105: 53-61, 2021 10.
Article in English | MEDLINE | ID: mdl-34425191

ABSTRACT

Di(2-ethylhexyl) phthalate (DEHP) is a chemical commonly used as a plasticizer to render polyvinyl chloride products more durable and flexible. Although exposure to DEHP has raised many health concerns due to the identification of DEHP as an endocrine disruptor, it is still used in consumer products, including polyvinyl chloride plastics, medical tubing, car interiors, and children's toys. To investigate the impact of early life exposure to DEHP on the ovary and testes, newborn piglets were orally dosed with DEHP (20 or 200 mg/kg/day) or vehicle control (tocopherol-stripped corn oil) for 21 days. Following treatment, ovaries, testes, and sera were harvested for histological assessment and measurement of steroid hormone levels. In male piglets, progesterone and pregnenolone levels were significantly lower in both treatment groups compared to control, whereas in female piglets, progesterone was significantly higher in the 20 mg group compared to control, indicating sex-specific effects in a non-monotonic manner. Follicle numbers and gene expression of steroidogenic enzymes and apoptotic factors were not altered in treated ovaries compared to controls. In DEHP-treated testes, germ cell migration was impaired and germ cell death was significantly increased compared to controls. Overall, the results of this study suggest that neonatal exposure to DEHP in pigs leads to sex-specific disruption of the reproductive system.


Subject(s)
Diethylhexyl Phthalate/toxicity , Endocrine Disruptors/toxicity , Animals , Animals, Newborn , Female , Gene Expression/drug effects , Gonadal Steroid Hormones/blood , Male , Ovary/drug effects , Ovary/metabolism , Ovary/pathology , Sex Characteristics , Swine , Testis/drug effects , Testis/pathology
11.
Reproduction ; 161(1): 31-41, 2021 01.
Article in English | MEDLINE | ID: mdl-33112284

ABSTRACT

Timely activation of the luteinizing hormone receptor (LHCGR) is critical for fertility. Activating mutations in LHCGR cause familial male-limited precocious puberty (FMPP) due to premature synthesis of testosterone. A mouse model of FMPP (KiLHRD582G), expressing a constitutively activating mutation in LHCGR, was previously developed in our laboratory. KiLHRD582G mice became progressively infertile due to sexual dysfunction and exhibited smooth muscle loss and chondrocyte accumulation in the penis. In this study, we tested the hypothesis that KiLHRD582G mice had erectile dysfunction due to impaired smooth muscle function. Apomorphine-induced erection studies determined that KiLHRD582G mice had erectile dysfunction. Penile smooth muscle and endothelial function were assessed using penile cavernosal strips. Penile endothelial cell content was not changed in KiLHRD582G mice. The maximal relaxation response to acetylcholine and the nitric oxide donor, sodium nitroprusside, was significantly reduced in KiLHRD582G mice indicating an impairment in the nitric oxide (NO)-mediated signaling. Cyclic GMP (cGMP) levels were significantly reduced in KiLHRD582G mice in response to acetylcholine, sodium nitroprusside and the soluble guanylate cyclase stimulator, BAY 41-2272. Expression of NOS1, NOS3 and PKRG1 were unchanged. The Rho-kinase signaling pathway for smooth muscle contraction was not altered. Together, these data indicate that KiLHRD582G mice have erectile dysfunction due to impaired NO-mediated activation of soluble guanylate cyclase resulting in decreased levels of cGMP and penile smooth muscle relaxation. These studies in the KiLHRD582G mice demonstrate that activating mutations in the mouse LHCGR cause erectile dysfunction due to impairment of the NO-mediated signaling pathway in the penile smooth muscle.


Subject(s)
Erectile Dysfunction/etiology , Muscle Relaxation , Muscle, Smooth/physiopathology , Penis/physiopathology , Receptors, LH/metabolism , Animals , Cyclic GMP/metabolism , Disease Models, Animal , Erectile Dysfunction/complications , Erectile Dysfunction/metabolism , Erectile Dysfunction/physiopathology , Extracellular Matrix/metabolism , Female , Infertility, Male/etiology , Infertility, Male/metabolism , Male , Mice , Nitric Oxide/metabolism , Penis/cytology , Penis/metabolism
12.
Sci Rep ; 10(1): 9921, 2020 06 18.
Article in English | MEDLINE | ID: mdl-32555437

ABSTRACT

Core Binding Factors (CBFs) are a small group of heterodimeric transcription factor complexes composed of DNA binding proteins, RUNXs, and a non-DNA binding protein, CBFB. The LH surge increases the expression of Runx1 and Runx2 in ovulatory follicles, while Cbfb is constitutively expressed. To investigate the physiological significance of CBFs, we generated a conditional mutant mouse model in which granulosa cell expression of Runx2 and Cbfb was deleted by the Esr2Cre. Female Cbfbflox/flox;Esr2cre/+;Runx2flox/flox mice were infertile; follicles developed to the preovulatory follicle stage but failed to ovulate. RNA-seq analysis of mutant mouse ovaries collected at 11 h post-hCG unveiled numerous CBFs-downstream genes that are associated with inflammation, matrix remodeling, wnt signaling, and steroid metabolism. Mutant mice also failed to develop corpora lutea, as evident by the lack of luteal marker gene expression, marked reduction of vascularization, and excessive apoptotic staining in unruptured poorly luteinized follicles, consistent with dramatic reduction of progesterone by 24 h after hCG administration. The present study provides in vivo evidence that CBFs act as essential transcriptional regulators of both ovulation and luteinization by regulating the expression of key genes that are involved in inflammation, matrix remodeling, cell differentiation, vascularization, and steroid metabolisms in mice.


Subject(s)
Core Binding Factor Alpha 1 Subunit/physiology , Core Binding Factor beta Subunit/physiology , Fertility , Granulosa Cells/metabolism , Infertility, Female/physiopathology , Luteinization , Ovulation , Animals , Female , Granulosa Cells/cytology , Mice , Mice, Knockout , Reproduction
13.
Nanomedicine ; 29: 102246, 2020 10.
Article in English | MEDLINE | ID: mdl-32590106

ABSTRACT

Globally, ischemic stroke is a leading cause of death and adult disability. Previous efforts to repair damaged brain tissue following ischemic events have been hindered by the relative isolation of the central nervous system. We have developed a gelatin nanoparticle-mediated intranasal drug delivery system as an efficient, non-invasive method for delivering 17ß-estradiol (E2) specifically to the brain, enhancing neuroprotection, and limiting systemic side effects. Young adult male C57BL/6 J mice subjected to 30 min of middle cerebral artery occlusion (MCAO) were administered intranasal preparations of E2-GNPs, water soluble E2, or saline as control 1 h after reperfusion. Following intranasal administration of 500 ng E2-GNPs, brain E2 content rose by 5.24 fold (P<0.0001) after 30 min and remained elevated by 2.5 fold at 2 h (P<0.05). The 100 ng dose of E2-GNPs reduced mean infarct volume by 54.3% (P<0.05, n=4) in comparison to saline treated controls, demonstrating our intranasal delivery system's efficacy.


Subject(s)
Brain Ischemia/drug therapy , Estradiol/pharmacology , Infarction, Middle Cerebral Artery/drug therapy , Nanoparticles/chemistry , Administration, Intranasal , Animals , Brain/drug effects , Brain/pathology , Brain Ischemia/pathology , Disease Models, Animal , Estradiol/chemistry , Gelatin/chemistry , Gelatin/pharmacology , Humans , Infarction, Middle Cerebral Artery/pathology , Mice , Neuroprotection/drug effects
14.
Cell Rep ; 31(2): 107496, 2020 04 14.
Article in English | MEDLINE | ID: mdl-32294429

ABSTRACT

Ovulation is triggered by the gonadotropin surge that induces the expression of two key genes, progesterone receptor (Pgr) and prostaglandin-endoperoxide synthase 2 (Ptgs2), in the granulosa cells of preovulatory follicles. Their gene products PGR and PTGS2 activate two separate pathways that are both essential for successful ovulation. Here, we show that the PGR plays an additional essential role: it attenuates ovulatory inflammation by diminishing the gonadotropin surge-induced Ptgs2 expression. PGR indirectly terminates Ptgs2 expression and PGE2 synthesis in granulosa cells by inhibiting the nuclear factor κB (NF-κB), a transcription factor required for Ptgs2 expression. When the expression of PGR is ablated in granulosa cells, the ovary undergoes a hyperinflammatory condition manifested by excessive PGE2 synthesis, immune cell infiltration, oxidative damage, and neoplastic transformation of ovarian cells. The PGR-driven termination of PTGS2 expression may protect the ovary from ovulatory inflammation.


Subject(s)
Ovary/metabolism , Ovulation/metabolism , Receptors, Progesterone/physiology , Animals , Cyclooxygenase 2/genetics , Cyclooxygenase 2/metabolism , Female , Gene Expression/genetics , Gene Expression Regulation/genetics , Granulosa Cells/metabolism , Inflammation/metabolism , Mice , Mice, Inbred C57BL , NF-kappa B/metabolism , Ovarian Follicle/metabolism , Progesterone/genetics , Progesterone/metabolism , RNA, Messenger/genetics , Receptors, Progesterone/genetics , Receptors, Progesterone/metabolism , Transcription Factors/metabolism
15.
Sci Rep ; 10(1): 5705, 2020 03 31.
Article in English | MEDLINE | ID: mdl-32235866

ABSTRACT

In males, defective reproductive traits induced by an exposure to an endocrine disruptor are transmitted to future generations via epigenetic modification of the germ cells. Interestingly, the impacted future generations display a wide range of heterogeneity in their reproductive traits. In this study, the role that the Y chromosome plays in creating such heterogeneity is explored by testing the hypothesis that the Y chromosome serves as a carrier of the exposure impact to future generations. This hypothesis implies that a male who has a Y chromosome that is from a male that was exposed to an endocrine disruptor will display a more severe reproductive phenotype than a male whose Y chromosome is from an unexposed male. To test this hypothesis, we used a mouse model in which F1 generation animals were exposed prenatally to an endocrine disruptor, di-2-ethylhexyl phthalate (DEHP), and the severity of impacted reproductive traits was compared between the F3 generation males that were descendants of F1 males (paternal lineage) and those from F1 females (maternal lineage). Pregnant dams (F0 generation) were exposed to the vehicle or 20 or 200 µg/kg/day of DEHP from gestation day 11 until birth. Paternal lineage F3 DEHP males exhibited decreased fertility, testicular steroidogenic capacity, and spermatogenesis that were more severely impaired than those of maternal lineage males. Indeed, testicular transcriptome analysis found that a number of Y chromosomal genes had altered expression patterns in the paternal lineage males. This transgenerational difference in the DEHP impact can be attributed specifically to the Y chromosome.


Subject(s)
Diethylhexyl Phthalate/toxicity , Endocrine Disruptors/toxicity , Prenatal Exposure Delayed Effects/chemically induced , Reproduction/drug effects , Spermatogenesis/drug effects , Spermatozoa/drug effects , Animals , Female , Male , Mice , Pregnancy , Prenatal Exposure Delayed Effects/genetics , Testis/drug effects
16.
Dev Reprod ; 24(4): 287-296, 2020 Dec.
Article in English | MEDLINE | ID: mdl-33537515

ABSTRACT

The absence of functional estrogen receptor α (Esr1) results in an overgrowth of the epididymal fat, as observed in estrogen receptor α knockout (ERαKO) mouse. The present research was aimed to evaluate expression of various molecules associated with adipocyte differentiation and maturation in the epididymal fat of ERαKO mouse at several postnatal ages by using quantitative real-time polymerase chain reaction. The highest transcript levels of all molecules were detected at 12 months of postnatal age, except leptin which the mRNA level was increased at 5 months of age and was unchanged until 12 months of age. The expression levels of CCAAT enhancer binding protein (Cebp) alpha, androgen receptor, and lipoprotein lipase were decreased at 5 months of age but increased at about 8 months of age. The mRNA levels of Cebp gamma and sterol regulatory element binding transcription factor 1 remained steady until 8 months of age. Continuous increases of transcript levels during postnatal period were found in Cebp beta, estrogen receptor (ER) beta, fatty acid binding protein 4, and delta like non-canonical Notch ligand 1. The increases of peroxisome proliferator-activated receptor gamma and adiponectin mRNA levels were detected as early as 8 months of age. The levels of fatty acid synthase and resistin transcript at 5 and 8 months of age were lower than that at 2 months of age. These findings show the aberrant expression patterns of genes related to adipocyte differentiation and maturation in the postnatal epididymal fat pad by the disruption of ER alpha function.

17.
Exp Mol Med ; 51(4): 1-9, 2019 04 15.
Article in English | MEDLINE | ID: mdl-30988419

ABSTRACT

Estrogen receptor alpha (ERα) is a sex hormone nuclear receptor that regulates various physiological events, including the immune response. Although there have been some recent studies on ERα regarding subsets of T cells, such as Th1, Th2, Th17, and Treg cells, its role in follicular helper T (TFH) cells has not yet been elucidated. To determine whether ERα controls TFH response and antibody production, we generated T cell-specific ERα knockout (KO) mice by utilizing the CD4-Cre/ERα flox system (CD4-ERα KO) and then analyzed their phenotype. At approximately 1 year of age, CD4-ERα KO mice spontaneously showed mild autoimmunity with increased autoantibody production and CD4+CD44+CXCR5+Bcl-6+ TFH cells in the mesenteric lymph nodes and spleen. We next immunized 6-8-week-old CD4-ERα KO mice with sheep red blood cells (SRBCs), which resulted in an increased proportion of TFH cells and germinal center (GC) responses. In addition, 17ß-estradiol (E2) treatment decreased TFH responses in wild-type mice and suppressed the mRNA expression of Bcl-6 and IL-21. Finally, we confirmed that the production of high-affinity antigen-specific antibodies and isotype class switching induced by NP-conjugated ovalbumin immunization were elevated in CD4-ERα KO mice under sufficient estrogen conditions. These results collectively demonstrate that the female sex hormone receptor ERα inhibits the TFH cell response and GC reaction to control autoantibody production, which was related to estrogen signaling and autoimmunity.


Subject(s)
Autoimmunity/physiology , Estrogen Receptor alpha/metabolism , T-Lymphocytes, Helper-Inducer/immunology , T-Lymphocytes, Helper-Inducer/metabolism , Animals , Autoimmunity/genetics , Cell Differentiation/genetics , Cell Differentiation/physiology , Enzyme-Linked Immunosorbent Assay , Estrogen Receptor alpha/genetics , Female , Flow Cytometry , Male , Mice , Microscopy, Fluorescence , Real-Time Polymerase Chain Reaction
18.
Environ Res ; 172: 194-201, 2019 05.
Article in English | MEDLINE | ID: mdl-30802670

ABSTRACT

Endocrine disrupting chemicals (EDCs) in the environment are considered to be a contributing factor to the decline in the sperm quality. With growing evidence of the harmful effects of EDCs on the male reproductive system, we tested the hypothesis that prenatal exposure to an environmentally relevant phthalate mixture adversely affects reproductive outcomes and androgen synthesis. In this study, an environmentally relevant composition of phthalates (15% DiNP, 21% DEHP, 36% DEP, 15% DBP, 8% DiBP, and 5% BBzP) that were detected in urine samples of pregnant women in Illinois, United States, was used. Pregnant CD-1 mice (F0) were orally dosed with a vehicle or the phthalate mixtures (20 µg/kg/day, 200 µg/kg/day, 200 mg/kg/day, or 500 mg/kg/day) from gestational day 10.5 to the day of birth. Then, the indices of the reproductive function of the F1 males born to these dams were assessed. Those male mice prenatally exposed to the phthalate mixture had smaller gonads, prostates and seminal vesicles, especially in the 20 µg/kg/day and 500 mg/kg/day phthalate mixture groups, compared to the controls. Importantly, at the age of 12 months, those prenatally exposed mice had significantly lower serum testosterone concentrations accompanied by the decreased mRNA expression of testicular steroidogenic genes (StAR, Cyp11, and Cyp17) and impaired spermatogenesis. Taken together, this study found that prenatal exposure to environmentally relevant doses of a phthalate mixture caused a life-long impact on the reproduction in male mice.


Subject(s)
Diethylhexyl Phthalate , Environmental Pollutants , Phthalic Acids , Prenatal Exposure Delayed Effects , Testosterone , Animals , Environmental Pollutants/toxicity , Environmental Pollutants/urine , Female , Gene Expression Regulation/drug effects , Genitalia, Male/drug effects , Humans , Illinois , Male , Mice , Phthalic Acids/toxicity , Phthalic Acids/urine , Pregnancy , Testosterone/blood , Testosterone/metabolism
19.
Reprod Toxicol ; 84: 114-121, 2019 03.
Article in English | MEDLINE | ID: mdl-30659930

ABSTRACT

Sanitary pads and diapers are made of synthetic plastic materials that can potentially be released while being used. This study measured the amounts of volatile organic compounds (VOCs) (methylene chloride, toluene, and xylene) and phthalates (DBP, DEHP, DEP, and BBP) contained in sanitary pads and diapers. In sanitary pads, 5,900- and 130-fold differences of VOC and phthalate concentrations were seen among the brands. In the diapers, 3- and 63-fold differences of VOC and phthalate concentrations were detected among the brands. VOC concentrations from the sanitary pads and diapers were similar to that of the residential air. However, phthalate concentrations of sanitary pads and diapers were significantly higher than those found in common commercial plastic products. As sanitary pads and diapers are in direct contact with external genitalia for an extended period, there is a probability that a considerable amount of VOCs or phthalates could be absorbed into the reproductive system.


Subject(s)
Absorbent Pads , Phthalic Acids/analysis , Consumer Product Safety , Environmental Monitoring , Methylene Chloride/analysis , Plastics , Toluene/analysis , Volatile Organic Compounds/analysis , Xylenes/analysis
20.
Endocr Rev ; 40(2): 369-416, 2019 04 01.
Article in English | MEDLINE | ID: mdl-30496379

ABSTRACT

The midcycle surge of LH sets in motion interconnected networks of signaling cascades to bring about rupture of the follicle and release of the oocyte during ovulation. Many mediators of these LH-induced signaling cascades are associated with inflammation, leading to the postulate that ovulation is similar to an inflammatory response. First responders to the LH surge are granulosa and theca cells, which produce steroids, prostaglandins, chemokines, and cytokines, which are also mediators of inflammatory processes. These mediators, in turn, activate both nonimmune ovarian cells as well as resident immune cells within the ovary; additional immune cells are also attracted to the ovary. Collectively, these cells regulate proteolytic pathways to reorganize the follicular stroma, disrupt the granulosa cell basal lamina, and facilitate invasion of vascular endothelial cells. LH-induced mediators initiate cumulus expansion and cumulus oocyte complex detachment, whereas the follicular apex undergoes extensive extracellular matrix remodeling and a loss of the surface epithelium. The remainder of the follicle undergoes rapid angiogenesis and functional differentiation of granulosa and theca cells. Ultimately, these functional and structural changes culminate in follicular rupture and oocyte release. Throughout the ovulatory process, the importance of inflammatory responses is highlighted by the commonalities and similarities between many of these events associated with ovulation and inflammation. However, ovulation includes processes that are distinct from inflammation, such as regulation of steroid action, oocyte maturation, and the eventual release of the oocyte. This review focuses on the commonalities between inflammatory responses and the process of ovulation.


Subject(s)
Inflammation/immunology , Luteinizing Hormone/metabolism , Ovulation/immunology , Ovulation/metabolism , Female , Humans , Inflammation/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL
...