Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Sci Rep ; 14(1): 9157, 2024 04 22.
Article in English | MEDLINE | ID: mdl-38644456

ABSTRACT

Brown adipose tissue (BAT) which is a critical regulator of energy homeostasis, and its activity is inhibited by obesity and low-grade chronic inflammation. Ginsenoside Rg3, the primary constituent of Korean red ginseng (steamed Panax ginseng CA Meyer), has shown therapeutic potential in combating inflammatory and metabolic diseases. However, it remains unclear whether Rg3 can protect against the suppression of browning or activation of BAT induced by inflammation. In this study, we conducted a screening of ginsenoside composition in red ginseng extract (RGE) and explored the anti-adipogenic effects of both RGE and Rg3. We observed that RGE (exist 0.25 mg/mL of Rg3) exhibited significant lipid-lowering effects in adipocytes during adipogenesis. Moreover, treatment with Rg3 (60 µM) led to the inhibition of triglyceride accumulation, subsequently promoting enhanced fatty acid oxidation, as evidenced by the conversion of radiolabeled 3H-fatty acids into 3H-H2O with mitochondrial activation. Rg3 alleviated the attenuation of browning in lipopolysaccharide (LPS)-treated beige adipocytes and primary brown adipocytes by recovered by uncoupling protein 1 (UCP1) and the oxygen consumption rate compared to the LPS-treated group. These protective effects of Rg3 on inflammation-induced inhibition of beige and BAT-derived thermogenesis were confirmed in vivo by treating with CL316,243 (a beta-adrenergic receptor agonist) and LPS to induce browning and inflammation, respectively. Consistent with the in vitro data, treatment with Rg3 (2.5 mg/kg, 8 weeks) effectively reversed the LPS-induced inhibition of brown adipocyte features in C57BL/6 mice. Our findings confirm that Rg3-rich foods are potential browning agents that counteract chronic inflammation and metabolic complications.


Subject(s)
Adipose Tissue, Brown , Ginsenosides , Lipopolysaccharides , Mitochondria , Panax , Plant Extracts , Thermogenesis , Ginsenosides/pharmacology , Animals , Thermogenesis/drug effects , Panax/chemistry , Mitochondria/metabolism , Mitochondria/drug effects , Mice , Plant Extracts/pharmacology , Adipose Tissue, Brown/drug effects , Adipose Tissue, Brown/metabolism , Adipose Tissue, Beige/metabolism , Adipose Tissue, Beige/drug effects , Mice, Inbred C57BL , Male , Adipogenesis/drug effects
2.
Somatosens Mot Res ; 33(3-4): 186-195, 2016.
Article in English | MEDLINE | ID: mdl-27756190

ABSTRACT

Although diabetic peripheral neuropathy (DPN) and chemotherapy-induced peripheral neuropathy (CIPN) are different disease entities, they share similar neuropathic symptoms that impede quality of life for these patients. Despite having very similar downstream effects, there have been no direct comparisons between DPN and CIPN with respect to symptom severity and therapeutic responses. We compared peripheral nerve damage due to hyperglycemia with that caused by paclitaxel (PAC) treatment as represented by biochemical parameters, diverse sensory tests, and immunohistochemistry of cutaneous and sciatic nerves. The therapeutic effects of alpha-lipoic acid and DA-9801 were also compared in the two models. Animals were divided into seven groups (n = 7-10) as follows: normal, diabetes (DM), DM + alpha-lipoic acid 100 mg/kg (ALA), DM + DA-9801 (100 mg/kg), paclitaxel-treated rat (PAC), PAC + ALA (100 mg/kg), and PAC + DA-9801 (100 mg/kg). The sensory thresholds of animals to mechanical, heat, and pressure stimuli were altered by both hyperglycemia and PAC when compared with controls, and the responses to sensory tests were different between both groups. There were no significant differences in the biochemical markers of blood glutathione between DM and PAC groups (p > .05). Quantitative comparisons of peripheral nerves by intraepidermal nerve fiber density (IENFD) analysis indicated that the DM and PAC groups were similar (6.18 ± 1.03 vs. 5.01 ± 2.57). IENFD was significantly improved after ALA and DA-9801 treatment in diabetic animals (7.6 ± 1.28, 7.7 ± 1.28, respectively, p < .05) but did not reach significance in the PAC-treated groups (6.05 ± 1.76, 5.66 ± 1.26, respectively, p > .05). Sciatic nerves were less damaged in the PAC-treated groups compared with the DM groups with respect to axonal diameter and area (8.60 ± 1.14 µm vs. 6.66 ± 1.07 µm, and 59.04 ± 15.16 µm2 vs. 35.71 ± 11.2 µm2, respectively, p < .05). Based on these results, the neuropathic manifestation and therapeutic responses of DPN may be different from other peripheral neuropathies. Therefore, specific pathogenic consideration according to peripheral neuropathy classification in addition to common treatments needs to be developed for management strategies of peripheral neuropathies.


Subject(s)
Diabetes Mellitus, Experimental/pathology , Diabetes Mellitus, Experimental/physiopathology , Pain Threshold/physiology , Peripheral Nervous System Diseases/pathology , Peripheral Nervous System Diseases/physiopathology , Animals , Antineoplastic Agents, Phytogenic/pharmacology , Blood Glucose/drug effects , Body Weight/drug effects , Diabetes Mellitus, Experimental/drug therapy , Disease Models, Animal , Glutathione/blood , Hyperalgesia/physiopathology , Interleukin-6/metabolism , Male , Nerve Growth Factor/metabolism , Neuroprostanes/therapeutic use , Paclitaxel/pharmacology , Pain Threshold/drug effects , Peripheral Nervous System Diseases/chemically induced , Peripheral Nervous System Diseases/drug therapy , Plant Preparations/therapeutic use , Rats , Rats, Sprague-Dawley , Sciatic Nerve/drug effects , Sciatic Nerve/metabolism , Sciatic Nerve/pathology , Thioctic Acid/therapeutic use
SELECTION OF CITATIONS
SEARCH DETAIL
...