Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 12 de 12
Filter
Add more filters










Publication year range
1.
Chem Commun (Camb) ; 60(40): 5298-5301, 2024 May 14.
Article in English | MEDLINE | ID: mdl-38660776

ABSTRACT

We demonstrate that an ionic liquid 1-ethyl-1-methylpyrrolidinium bis(trifluoromethylsulfonyl)imide combined with propylene carbonate and lithium bis(trifluoromethanesulfonyl)imide yields a hybrid electrolyte that enables a wide operational temperature window (-20 °C to 60 °C). When integrated into a lithium titanate‖lithium cobalt oxide full-cell configuration, high-rate capability is achieved at -20 °C with >40% retention at a C/2 cycling rate, and negligible capacity fade is observed during rate capability tests and long-term cycling at 60 °C.

3.
Sci Rep ; 11(1): 18020, 2021 09 09.
Article in English | MEDLINE | ID: mdl-34504266

ABSTRACT

Electrochemical advanced oxidative processes (EAOP) are a promising route to destroy recalcitrant organic contaminants such as per- and polyfluoroalkyl substances (PFAS) in drinking water. Central to EAOP are catalysis-induced reactive free radicals for breaking the carbon fluorine bonds in PFAS. Generating these reactive species electrochemically at electrodes provides an advantage over other oxidation processes that rely on chemicals or other harsh conditions. Herein, we report on the performance of niobium (Nb) doped rutile titanium oxide (TiO2) as a novel EAOP catalytic material, combining theoretical modeling with experimental synthesis and characterization. Calculations based on density functional theory are used to predict the overpotential for oxygen evolution at these candidate electrodes, which must be high in order to oxidize PFAS. The results indicate a non-monotonic trend in which Nb doping below 6.25 at.% is expected to reduce performance relative to TiO2, while higher concentrations up to 12.5 at.% lead to increased performance, approaching that of state-of-the-art Magnéli Ti4O7. TiO2 samples were synthesized with Nb doping concentration at 10 at.%, heat treated at temperatures from 800 to 1100 °C, and found to exhibit high oxidative stability and high generation of reactive oxygen free radical species. The capability of Nb-doped TiO2 to destroy two common species of PFAS in challenge water was tested, and moderate reduction by ~ 30% was observed, comparable to that of Ti4O7 using a simple three-electrode configuration. We conclude that Nb-doped TiO2 is a promising alternative EAOP catalytic material with increased activity towards generating reactive oxygen species and warrants further development for electrochemically destroying PFAS contaminants.

4.
RSC Adv ; 11(24): 14495-14503, 2021 Apr 15.
Article in English | MEDLINE | ID: mdl-35423958

ABSTRACT

Cation-defective iron oxides have proven to be effective Li-ion charge-storage hosts in nonaqueous electrolytes, particularly when expressed in disordered, nanoscale forms such as aerogels. Replacing a fraction of Fe sites in ferrites with high-valent cations such as V5+ introduces cation-vacancy defects that increase Li-ion capacity. Herein, we show that compositional substitution with electroinactive Al3+ further increases Li-ion capacity by 30% when incorporated within a disordered VFe2Ox aerogel, as verified by electrochemical tests in a two-terminal Li half-cell. We use electroanalytical techniques to show that both Al-VFe2Ox and VFe2Ox aerogels exhibit many of the hallmarks of pseudocapacitive materials, including fast charge-discharge and surface-controlled charge-storage kinetics. These disordered, substituted ferrites also provide the high specific capacity expected from battery-type electrode materials, up to 130 mA h g-1 for Al-VFe2Ox. Our findings are discussed in the context of related Li-insertion hosts that blur the distinctions between battery-like and capacitor-like behavior.

6.
J Am Chem Soc ; 142(14): 6737-6749, 2020 Apr 08.
Article in English | MEDLINE | ID: mdl-32223192

ABSTRACT

Conventional Li-ion cathodes store charge by reversible intercalation of Li coupled to metal cation redox. There has been increasing interest in new materials capable of accommodating more than one Li per transition-metal center, thereby yielding higher charge storage capacities. We demonstrate here that the lithium-rich layered iron sulfide Li2FeS2 as well as a new structural analogue, LiNaFeS2, reversibly store ≥1.5 electrons per formula unit and support extended cycling. Ex situ and operando structural and spectroscopic data indicate that delithiation results in reversible oxidation of Fe2+ concurrent with an increase in the covalency of the Fe-S interactions, followed by reversible anion redox: 2 S2-/(S2)2-. S K-edge spectroscopy unequivocally proves the contribution of the anions to the redox processes. The structural response to the oxidation processes is found to be different in Li2FeS2 in contrast to that in LiNaFeS2, which we suggest is the cause for capacity fade in the early cycles of LiNaFeS2. The materials presented here have the added benefit of avoiding resource-sensitive transition metals such as Co and Ni. In contrast to Li-rich oxide materials that have been the subject of so much recent study and that suffer capacity fade and electrolyte degradation issues, the materials presented here operate within the stable potential window of the electrolyte, permitting a clearer understanding of the underlying processes.

7.
ACS Appl Mater Interfaces ; 12(12): 14071-14078, 2020 Mar 25.
Article in English | MEDLINE | ID: mdl-32118405

ABSTRACT

Electrochemical energy storage arises from processes that are broadly categorized as capacitive, pseudocapacitive, or battery-like. Advanced charge-storing materials that are designed to deliver high capacity at a high rate often exhibit a multiplicity of such mechanisms, which complicates the understanding of their charge-storage behavior. Herein, we apply a "3D Bode analysis" technique to identify key descriptors for fast Li-ion storage processes, where AC impedance data, such as the real capacitance (C') or phase angle (ϕ), are represented versus the frequency (f) and a third independent variable, the applied DC cell voltage. For double-layer processes, a near-constant C' or ϕ is supported across the entire voltage range, and the decrease in these values shows a near-linear decrease at higher f. For pseudocapacitance, an increase in C' is delivered, accompanied by high C' retention at higher f compared to double-layer processes. Interestingly, the lower ϕ values, where C' is highest, suggest that this is a key descriptor for pseudocapacitance, where high-rate charge storage is still facilitated within a kinetically limited regime. For battery-like processes, a high C' is only observed at the voltage at which the material stores charge, while outside that voltage, C' is negligible. The three-dimensional (3D) Bode analysis allows charge-storage dynamics to be mapped out in great detail with more delineation between mechanisms compared to the more frequently deployed kinetic analyses derived from cyclic voltammetry.

8.
ACS Nano ; 11(8): 7995-8001, 2017 08 22.
Article in English | MEDLINE | ID: mdl-28763196

ABSTRACT

The high theoretical energy density of alloyed lithium and germanium (Li15Ge4), 1384 mAh/g, makes germanium a promising anode material for lithium-ion batteries. However, common alloy anode architectures suffer from long-term instability upon repetitive charge-discharge cycles that arise from stress-induced degradation upon lithiation (volume expansion >300%). Here, we explore the use of the two-dimensional nanosheet structure of germanane to mitigate stress from high volume expansion and present a facile method for producing stable single-to-multisheet dispersions of pure germanane. Purity and degree of exfoliation were assessed with scanning electron microscopy, transmission electron microscopy, and Raman spectroscopy. We measured representative germanane battery electrodes to have a reversible Li-ion capacity of 1108 mAh/g when cycled between 0.1 and 2 V vs Li/Li+. These results indicate germanane anodes are capable of near-theoretical-maximum energy storage, perform well at high cycling rates, and can maintain capacity over 100 cycles.

9.
Langmuir ; 33(37): 9390-9397, 2017 09 19.
Article in English | MEDLINE | ID: mdl-28627895

ABSTRACT

Electrocatalysis of the oxygen evolution reaction (OER) and oxygen reduction reaction (ORR) was assessed for a series of Ni-substituted ferrites (NiyFe1-yOx, where y = 0.1 to 0.9) as expressed in porous, high-surface-area forms (ambigel and aerogel nanoarchitectures). We then correlate electrocatalytic activity with Ni:Fe stoichiometry as a function of surface area, crystallite size, and free volume. In order to ensure in-series comparisons, calcination at 350 °C/air was necessary to crystallize the respective NiyFe1-yOx nanoarchitectures, which index to the inverse spinel structure for Fe-rich materials (y ≤ 0.33), rock salt for the most Ni-rich material (y = 0.9), and biphasic for intermediate stoichiometry (0.5 ≤ y ≤ 0.67). In the intermediate Ni:Fe stoichiometric range (0.33 ≤ y ≤ 0.67), the OER current density at 390 mV increases monotonically with increasing Ni content and increasing surface area, but with different working curves for ambigels versus aerogels. At a common stoichiometry within this range, ambigels and aerogels yield comparable OER performance, but do so by expressing larger crystallite size (ambigel) versus higher surface area (aerogel). Effective OER activity can be achieved without requiring supercritical-fluid extraction as long as moderately high surface area, porous materials can be prepared. We find improved OER performance (η decreases from 390 to 373 mV) for Ni0.67Fe0.33Ox aerogel heat-treated at 300 °C/Ar, owing to an increase in crystallite size (2.7 to 4.1 nm). For the ORR, electrocatalytic activity favors Fe-rich NiyFe1-yOx materials; however, as the Ni-content increases beyond y = 0.5, a two-electron reduction pathway is still exhibited, demonstrating that bifunctional OER and ORR activity may be possible by choosing a nickel ferrite nanoarchitecture that provides high OER activity with sufficient ORR activity. Assessing the catalytic activity requires an appreciation of the multivariate interplay among Ni:Fe stoichiometry, surface area, crystallographic phase, and crystallite size.

10.
ACS Appl Mater Interfaces ; 9(2): 1416-1425, 2017 Jan 18.
Article in English | MEDLINE | ID: mdl-27996248

ABSTRACT

The increasing interest in Na-ion batteries (NIBs) can be traced to sodium abundance, its low cost compared to lithium, and its intercalation chemistry being similar to that of lithium. We report that the electrochemical properties of a promising negative electrode material, Na2Ti3O7, are improved by exfoliating its layered structure and forming 2D nanoscale morphologies, nanoplatelets, and nanosheets. Exfoliation of Na2Ti3O7 was carried out by controlling the amount of proton exchange for Na+ and then proceeding with the intercalation of larger cations such as methylammonium and propylammonium. An optimized mixture of nanoplatelets and nanosheets exhibited the best electrochemical performance in terms of high capacities in the range of 100-150 mA h g-1 at high rates with stable cycling over several hundred cycles. These properties far exceed those of the corresponding bulk material, which is characterized by slow charge-storage kinetics and poor long-term stability. The results reported in this study demonstrate that charge-storage processes directed at 2D morphologies of surfaces and few layers of sheets are an exciting direction for improving the energy and power density of electrode materials for NIBs.

11.
Nat Mater ; 16(4): 454-460, 2017 04.
Article in English | MEDLINE | ID: mdl-27918566

ABSTRACT

The short charging times and high power capabilities associated with capacitive energy storage make this approach an attractive alternative to batteries. One limitation of electrochemical capacitors is their low energy density and for this reason, there is widespread interest in pseudocapacitive materials that use Faradaic reactions to store charge. One candidate pseudocapacitive material is orthorhombic MoO3 (α-MoO3), a layered compound with a high theoretical capacity for lithium (279 mA h g-1 or 1,005 C g-1). Here, we report on the properties of reduced α-MoO3-x(R-MoO3-x) and compare it with fully oxidized α-MoO3 (F-MoO3). The introduction of oxygen vacancies leads to a larger interlayer spacing that promotes faster charge storage kinetics and enables the α-MoO3 structure to be retained during the insertion and removal of Li ions. The higher specific capacity of the R-MoO3-x is attributed to the reversible formation of a significant amount of Mo4+ following lithiation. This study underscores the potential importance of incorporating oxygen vacancies into transition metal oxides as a strategy for increasing the charge storage kinetics of redox-active materials.

12.
ACS Nano ; 10(8): 7572-81, 2016 08 23.
Article in English | MEDLINE | ID: mdl-27472531

ABSTRACT

Charge storage devices with high energy density and enhanced rate capabilities are highly sought after in today's mobile world. Although several high-rate pseudocapacitive anode materials have been reported, cathode materials operating in a high potential range versus lithium metal are much less common. Here, we present a nanostructured version of the well-known cathode material, LiMn2O4. The reduction in lithium-ion diffusion lengths and improvement in rate capabilities is realized through a combination of nanocrystallinity and the formation of a 3-D porous framework. Materials were fabricated from nanoporous Mn3O4 films made by block copolymer templating of preformed nanocrystals. The nanoporous Mn3O4 was then converted via solid-state reaction with LiOH to nanoporous LixMn2O4 (1 < x < 2). The resulting films had a wall thickness of ∼15 nm, which is small enough to be impacted by inactive surface sites. As a consequence, capacity was reduced by about half compared to bulk LiMn2O4, but both charge and discharge kinetics as well as cycling stability were improved significantly. Kinetic analysis of the redox reactions was used to verify the pseudocapacitive mechanisms of charge storage and establish the feasibility of using nanoporous LixMn2O4 as a cathode in lithium-ion devices based on pseudocapacitive charge storage.

SELECTION OF CITATIONS
SEARCH DETAIL
...