Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 17 de 17
Filter
Add more filters










Publication year range
1.
Sci Rep ; 14(1): 10978, 2024 05 14.
Article in English | MEDLINE | ID: mdl-38744928

ABSTRACT

Maintaining epidermal homeostasis relies on a tightly organized process of proliferation and differentiation of keratinocytes. While past studies have primarily focused on calcium regulation in keratinocyte differentiation, recent research has shed light on the crucial role of lysosome dysfunction in this process. TLR adaptor interacting with SLC15A4 on the lysosome (TASL) plays a role in regulating pH within the endo-lysosome. However, the specific role of TASL in keratinocyte differentiation and its potential impact on proliferation remains elusive. In our study, we discovered that TASL deficiency hinders the proliferation and migration of keratinocytes by inducing G1/S cell cycle arrest. Also, TASL deficiency disrupts proper differentiation process in TASL knockout human keratinocyte cell line (HaCaT) by affecting lysosomal function. Additionally, our research into calcium-induced differentiation showed that TASL deficiency affects calcium modulation, which is essential for keratinocyte regulation. These findings unveil a novel role of TASL in the proliferation and differentiation of keratinocytes, providing new insights into the intricate regulatory mechanisms of keratinocyte biology.


Subject(s)
Calcium , Cell Differentiation , Cell Proliferation , Keratinocytes , Lysosomes , Keratinocytes/metabolism , Keratinocytes/cytology , Humans , Lysosomes/metabolism , Calcium/metabolism , Cell Movement , Cell Line
2.
Sci Rep ; 14(1): 5908, 2024 03 11.
Article in English | MEDLINE | ID: mdl-38467701

ABSTRACT

Inflammatory bowel disease (IBD) is a chronic inflammatory condition that is influenced by various factors, including environmental factors, immune responses, and genetic elements. Among the factors that influence IBD progression, macrophages play a significant role in generating inflammatory mediators, and an increase in the number of activated macrophages contributes to cellular damage, thereby exacerbating the overall inflammatory conditions. HSPA9, a member of the heat shock protein 70 family, plays a crucial role in regulating mitochondrial processes and responding to oxidative stress. HSPA9 deficiency disrupts mitochondrial dynamics, increasing mitochondrial fission and the production of reactive oxygen species. Based on the known functions of HSPA9, we considered the possibility that HSPA9 reduction may contribute to the exacerbation of colitis and investigated its relevance. In a dextran sodium sulfate-induced colitis mouse model, the downregulated HSPA9 exacerbates colitis symptoms, including increased immune cell infiltration, elevated proinflammatory cytokines, decreased tight junctions, and altered macrophage polarization. Moreover, along with the increased mitochondrial fission, we found that the reduction in HSPA9 significantly affected the superoxide dismutase 1 levels and contributed to cellular death. These findings enhance our understanding of the intricate mechanisms underlying colitis and contribute to the development of novel therapeutic approaches for this challenging condition.


Subject(s)
Colitis , Inflammatory Bowel Diseases , Animals , Mice , Cell Death , Colitis/metabolism , Colon/metabolism , Cytokines/metabolism , Dextran Sulfate/toxicity , Disease Models, Animal , Inflammatory Bowel Diseases/metabolism , Macrophages/metabolism , Mice, Inbred C57BL , Oxidative Stress
3.
Nat Commun ; 15(1): 685, 2024 Jan 23.
Article in English | MEDLINE | ID: mdl-38263321

ABSTRACT

We aimed to determine the activity of the anti-VEGF receptor tyrosine-kinase inhibitor, pazopanib, combined with the anti-PD-L1 inhibitor, durvalumab, in metastatic and/or recurrent soft tissue sarcoma (STS). In this single-arm phase 2 trial (NCT03798106), treatment consisted of pazopanib 800 mg orally once a day and durvalumab 1500 mg once every 3 weeks. Primary outcome was overall response rate (ORR) and secondary outcomes included progression-free survival (PFS), overall survival, disease control rate, immune-related response criteria, and safety. The ORR was 30.4% and the trial met the pre-specified endpoint. The median PFS was 7.7 months (95% confidence interval: 5.7-10.4). The common treatment-related adverse events of grades 3-4 included neutropenia (9 [19.1%]), elevated aspartate aminotransferase (7 [14.9%]), alanine aminotransferase (5 [10.6%]), and thrombocytopenia (4 [8.5%]). In a prespecified transcriptomic analysis, the B lineage signature was a significant key determinant of overall response (P = 0.014). In situ analysis also showed that tumours with high CD20+ B cell infiltration and vessel density had a longer PFS (P = 6.5 × 10-4) than those with low B cell infiltration and vessel density, as well as better response (50% vs 12%, P = 0.019). CD20+ B cell infiltration was identified as the only independent predictor of PFS via multivariate analysis. Durvalumab combined with pazopanib demonstrated promising efficacy in an unselected STS cohort, with a manageable toxicity profile.


Subject(s)
Antibodies, Monoclonal , Indazoles , Pyrimidines , Sarcoma , Soft Tissue Neoplasms , Sulfonamides , Humans , Neoplasm Recurrence, Local
4.
Pathology ; 56(3): 374-381, 2024 Apr.
Article in English | MEDLINE | ID: mdl-38296676

ABSTRACT

Pellino-1 plays a role in regulating inflammation and immune responses, and its effects on tumours are complex, with different outcomes reported in various studies. Additionally, the role of Pellino-1 in diffuse large B-cell lymphoma (DLBCL) has not been thoroughly investigated. We aimed to examine the expression of Pellino-1 in tumour cells and tumour-infiltrating lymphocytes (TILs) separately and identify the clinicopathological significance of Pellino-1 expression in DLBCL. We evaluated Pellino-1 expression in 104 patients with DLBCL. The density of specific cell types was quantitatively analysed using digital image analysis after a multiplex immunofluorescence staining with Pellino-1, CD20, CD8, FOXP3, and PD-1. Pellino-1 expression was mostly observed in CD20+ tumour cells and CD8+ TILs. The high CD8+/Pellino-1+ group was significantly associated with the non-GCB subtype and higher numbers of Foxp3+ T-cells. Patients with high CD20+/Pellino-1+ and high CD8+/Pellino-1+ cell densities had significantly shorter event-free survival (EFS) rates. The multivariate Cox-regression analysis showed that CD20+/Pellino-1+ cell density and CD8+/Pellino-1+ cell density were independent poor prognostic factors for EFS. Furthermore, patients with low densities of both CD20+/Pellino-1+ and CD8+/Pellino-1+ cells demonstrated a prognosis superior to that of patients with high Pellino-1+ cell densities, either alone or in combination. Additionally, the multivariate analysis demonstrated that the combination of CD20+/Pellino-1+ and CD8+/Pellino-1+ cell densities was an independent prognostic factor for EFS and overall survival. Pellino-1 expression was observed in both tumour cells and TILs, particularly in cytotoxic T-cells, and was correlated with poor outcomes in DLBCL. Thus, Pellino-1 might have an oncogenic effect on DLBCL and might be a potential target for improving cytotoxic T-cell activity.


Subject(s)
Lymphoma, Large B-Cell, Diffuse , Humans , Lymphoma, Large B-Cell, Diffuse/metabolism , CD8-Positive T-Lymphocytes , Lymphocytes, Tumor-Infiltrating/pathology , Prognosis , Forkhead Transcription Factors/metabolism
5.
J Cancer ; 14(10): 1875-1887, 2023.
Article in English | MEDLINE | ID: mdl-37476191

ABSTRACT

Background: Oral cancer is one of the most prevalent malignant tumors worldwide. Silibinin has been reported to exert therapeutic effects in various cancer models. However, its mechanism of action in oral cancer remains unclear. We aimed to examine the molecular processes underlying the effects of silibinin in oral cancer in vitro and in vivo as well as its potential anticancer effects. Next, we investigated the molecular processes underlying both in vitro and in vivo outcomes of silibinin treatment on oral cancer. Methods: To investigate the effects of silibinin on the growth of oral cancer cells, cell proliferation and anchorage-independent colony formation tests were conducted on YD10B and Ca9-22 oral cancer cells. The effects of silibinin on the migration and invasion of oral cancer cells were evaluated using transwell assays. Flow cytometry was used to examine apoptosis, cell cycle distribution, and accumulation of reactive oxygen species (ROS). The molecular mechanism underlying the anticancer effects of silibinin was explored using immunoblotting. The in vivo effects of silibinin were evaluated using a Ca9-22 xenograft mouse model. Results: Silibinin effectively suppressed YD10B and Ca9-22 cell proliferation and colony formation in a dose-dependent manner. Moreover, it induced cell cycle arrest in the G0/G1 phase, apoptosis, and ROS generation in these cells. Furthermore, silibinin inhibited the migration and invasion abilities of YD10B and Ca9-22 cells by regulating the expression of proteins involved in the epithelial-mesenchymal transition. Western blotting revealed that silibinin downregulated SOD1 and SOD2 and triggered the JNK/c-Jun pathway in oral cancer cells. Silibinin significantly inhibited xenograft tumor growth in nude mice, with no obvious toxicity. Conclusions: Silibinin considerably reduced the development of oral cancer cells by inducing apoptosis, G0/G1 arrest, ROS generation, and activation of the JNK/c-Jun pathway. Importantly, silibinin effectively suppressed xenograft tumor growth in nude mice. Our findings indicate that silibinin may be a promising option for the prevention or treatment of oral cancer.

6.
Exp Dermatol ; 32(9): 1476-1484, 2023 09.
Article in English | MEDLINE | ID: mdl-37291939

ABSTRACT

Pellino-1 plays a crucial role in cellular proliferation and regulates inflammatory processes. This study investigated Pellino-1 expression patterns and their relationship with CD4+ T-cell subsets in psoriasis patients. Group 1 comprised primarily biopsied psoriasis lesions from 378 patients, multiplex-immunostained for Pellino-1, CD4 and representative T helper (Th) cells (T-bet [Th1], GATA3 [Th2], and RORγt [Th17] and regulatory T cell [FoxP3] markers). Ki-67 labeling was evaluated in the epidermis. Group 2 comprised 43 Pellino-1-positive cases immunostained for Pellino-1 in both lesion and non-lesion skin biopsy samples. Five normal skin biopsies served as controls. Among 378 psoriasis cases, 293 (77.5%) were positive for Pellino-1 in the epidermis. Pellino-1-positivity was higher in psoriasis lesions than in non-lesions and normal skin (52.55% vs. 40.43% vs. 3.48%, p < 0.001; H-score, 72.08 vs. 47.55 vs. 4.40, p < 0.001, respectively). Pellino-1-positive cases also had a significantly higher Ki-67 labeling index (p < 0.001). Epidermal Pellino1-positivity was significantly associated with higher RORγt+ (p = 0.001) and FoxP3+ (p < 0.001) CD4+ T cell ratios but not T-bet+ and GATA3+ CD4+ T cell ratios. Among the CD4+ Pellino-1+ T-cell subsets, the CD4+ Pellino-1+ RORγt+ ratio was significantly associated with epidermal Pellinio-1 expression (p < 0.001). Pellino-1 expression is thus increased in psoriasis lesions and associated with increased epidermal proliferation and CD4+ T-cell subset infiltration, especially Th17 cells. This suggests that Pellino-1 could be a therapeutic target that simultaneously regulates psoriasis epidermal proliferation and immune interactions.


Subject(s)
Psoriasis , Th17 Cells , Humans , Nuclear Receptor Subfamily 1, Group F, Member 3 , Ki-67 Antigen/metabolism , Epidermis/metabolism , Psoriasis/drug therapy , Cell Proliferation , Forkhead Transcription Factors/metabolism
7.
Antioxidants (Basel) ; 11(2)2022 Jan 19.
Article in English | MEDLINE | ID: mdl-35204073

ABSTRACT

The effect of glucose-dependent insulinotropic polypeptide (GIP) on cells under oxidative stress induced by glutamate, a neurotransmitter, and the underlying molecular mechanisms were assessed in the present study. We found that in the pre-treatment of HT-22 cells with glutamate in a dose-dependent manner, intracellular ROS were excessively generated, and additional cell damage occurred in the form of lipid peroxidation. The neurotoxicity caused by excessive glutamate was found to be ferroptosis and not apoptosis. Other factors (GPx-4, Nrf2, Nox1 and Hspb1) involved in ferroptosis were also identified. In other words, it was confirmed that GIP increased the activity of sub-signalling molecules in the process of suppressing ferroptosis as an antioxidant and maintained a stable cell cycle even under glutamate-induced neurotoxicity. At the same time, in HT-22 cells exposed to ferroptosis as a result of excessive glutamate accumulation, GIP sustained cell viability by activating the mitogen-activated protein kinase (MAPK) signalling pathway. These results suggest that the overexpression of the GIP gene increases cell viability by regulating mechanisms related to cytotoxicity and reactive oxygen species production in hippocampal neuronal cell lines.

8.
Cancer Immunol Res ; 10(3): 327-342, 2022 03 01.
Article in English | MEDLINE | ID: mdl-35058288

ABSTRACT

CD8+ T cells play an important role in the elimination of tumors. However, the underlying mechanisms involved in eliciting and maintaining effector responses in CD8+ T cells remain to be elucidated. Pellino1 (Peli1) is a receptor signal-responsive ubiquitin E3 ligase, which acts as a critical mediator for innate immunity. Here, we found that the risk of developing tumors was dependent on Peli1 expression. Peli1 was upregulated in CD8+ T cells among tumor-infiltrating lymphocytes (TIL). In contrast, a deficit of Peli1 enhanced the maintenance and effector function of CD8+ TILs. The development of Peli1-deficient CD8+ TILs prevented T-cell exhaustion and retained the hyperactivated states of T cells to eliminate tumors. We also found that Peli1 directly interacted with protein kinase C-theta (PKCθ), a central kinase in T-cell receptor downstream signal transduction, but whose role in tumor immunology remains unknown. Peli1 inhibited the PKCθ pathway by lysine 48-mediated ubiquitination degradation in CD8+ TILs. In summary, the Peli1-PKCθ signaling axis is a common inhibitory mechanism that prevents antitumor CD8+ T-cell function, and thus targeting Peli1 may be a useful therapeutic strategy for improving cytotoxic T-cell activity.


Subject(s)
Nuclear Proteins , Ubiquitin-Protein Ligases , CD8-Positive T-Lymphocytes/metabolism , Lymphocytes, Tumor-Infiltrating/metabolism , Protein Kinase C-theta/metabolism , Signal Transduction , Ubiquitin-Protein Ligases/metabolism
9.
J Inflamm Res ; 14: 4299-4312, 2021.
Article in English | MEDLINE | ID: mdl-34511969

ABSTRACT

PURPOSE: Psoriasis is a common and well-studied autoimmune skin disease, which is characterized by plaques. The formation of psoriasis plaques occurs through the hyperproliferation and abnormal differentiation of keratinocytes, infiltration of numerous immune cells into the dermis, increased subepidermal angiogenesis, and various autoimmune-associated cytokines and chemokines. According to previous research, Lin28 regulates the let-7 family, and let-7b is associated with psoriasis. However, the link between Lin28 and psoriasis is unclear. In this study, an association was identified between Lin28a and psoriasis progression, which promoted the pathological characteristic of psoriasis in epidermal keratinocytes. PATIENTS AND METHODS: This study aims to investigate the role of Lin28a and its underlying mechanism in psoriasis through in vivo and in vitro models, which include the Lin28a-overexpressing transgenic (TG) mice and Lin28a-overexpressing human keratinocyte (HaCaT) cell lines, respectively. RESULTS: In vivo and in vitro results revealed that overexpression of Lin28a downregulated microRNA let-7 expression levels and caused hyperproliferation and abnormal differentiation in keratinocytes. In imiquimod (IMQ)-induced psoriasis-like inflammation, Lin28a overexpressing transgenic (TG) mice exhibited more severe symptoms of psoriasis. CONCLUSION: Mechanistically, Lin28a exacerbated psoriasis-like inflammation through the activation of the extracellular-signal-regulated kinase (ERK) and signal transducer and activator of transcription 3 signaling (STAT 3) by targeting proinflammatory cytokine interleukin-6 (IL-6).

10.
Cell Biosci ; 11(1): 161, 2021 Aug 19.
Article in English | MEDLINE | ID: mdl-34407873

ABSTRACT

BACKGROUND: Juxtaposed with another zinc finger protein 1 (JAZF1) is associated with metabolic disorders, including type 2 diabetes mellitus (T2DM). Several studies showed that JAZF1 and body fat mass are closely related. We attempted to elucidate the JAZF1 functions on adipose development and related metabolism using in vitro and in vivo models. RESULTS: The JAZF1 expression was precisely regulated during adipocyte differentiation of 3T3-L1 preadipocyte and mouse embryonic fibroblasts (MEFs). Homozygous JAZF1 deletion (JAZF1-KO) resulted in impaired adipocyte differentiation in MEF. The JAZF1 role in adipocyte differentiation was demonstrated by the regulation of PPARγ-a key regulator of adipocyte differentiation. Heterozygous JAZF1 deletion (JAZF1-Het) mice fed a normal diet (ND) or a high-fat diet (HFD) had less adipose tissue mass and impaired glucose homeostasis than the control (JAZF1-Cont) mice. However, other metabolic organs, such as brown adipose tissue and liver, were negligible effect on JAZF1 deficiency. CONCLUSION: Our findings emphasized the JAZF1 role in adipocyte differentiation and related metabolism through the heterozygous knockout mice. This study provides new insights into the JAZF1 function in adipose development and metabolism, informing strategies for treating obesity and related metabolic disorders.

11.
Sci Rep ; 11(1): 16348, 2021 08 11.
Article in English | MEDLINE | ID: mdl-34381063

ABSTRACT

Systemic lupus erythematosus (SLE) is a chronic autoimmune disease that affects multiple organs. Recent studies suggest relevance between cysteine protease cathepsin S (CTSS) expression and SLE. To investigate the mechanism of CTSS in SLE, CTSS-overexpressing transgenic (TG) mice were generated, and induced lupus-like symptoms. Eight months later, the TG mice spontaneously developed typical SLE symptoms regardless of the inducement. Furthermore, we observed increased toll-like receptor 7 (TLR7) expression with increased monocyte and neutrophil populations in the TG mice. In conclusion, overexpression of CTSS in mice influences TLR7 expression, autoantibodies and IFN-α, which leads to an autoimmune reaction and exacerbates lupus-like symptoms.


Subject(s)
Cathepsins/metabolism , Interferon-alpha/metabolism , Membrane Glycoproteins/metabolism , Toll-Like Receptor 7/metabolism , Up-Regulation/physiology , Animals , Autoantibodies , Female , Humans , Lupus Erythematosus, Systemic/metabolism , Mice , Mice, Inbred C57BL , Mice, Inbred ICR , Mice, Transgenic , Monocytes/metabolism , Neutrophils/metabolism
12.
Cell Mol Immunol ; 18(6): 1395-1411, 2021 06.
Article in English | MEDLINE | ID: mdl-33850312

ABSTRACT

The homeostatic balance between effector T cells and regulatory T cells (Tregs) is crucial for adaptive immunity; however, epigenetic programs that inhibit phosphorylation to regulate Treg development, peripheral expression, and suppressive activity are elusive. Here, we found that the Ssu72 phosphatase is activated by various T-cell receptor signaling pathways, including the T-cell receptor and IL-2R pathways, and localizes at the cell membrane. Deletion of Ssu72 in T cells disrupts CD4+ T-cell differentiation into Tregs in the periphery via the production of high levels of the effector cytokines IL-2 and IFNγ, which induce CD4+ T-cell activation and differentiation into effector cell lineages. We also found a close correlation between downregulation of Ssu72 and severe defects in mucosal tolerance in patients. Interestingly, Ssu72 forms a complex with PLCγ1, which is an essential effector molecule for T-cell receptor signaling as well as Treg development and function. Ssu72 deficiency impairs PLCγ1 downstream signaling and results in failure of Foxp3 induction. Thus, our studies show that the Ssu72-mediated cytokine response coordinates the differentiation and function of Treg cells in the periphery.


Subject(s)
Cell Differentiation , Homeostasis , Phosphoprotein Phosphatases/metabolism , Receptors, Antigen, T-Cell/metabolism , Signal Transduction , T-Lymphocytes, Regulatory/immunology , Animals , Cell Lineage , Disease Susceptibility , Forkhead Transcription Factors/metabolism , Immune Tolerance , Inflammatory Bowel Diseases/immunology , Inflammatory Bowel Diseases/pathology , Mice, Inbred C57BL , Mice, Knockout , Models, Biological , Nuclear Receptor Subfamily 1, Group F, Member 3/metabolism , Phospholipase C gamma/metabolism , Phosphoprotein Phosphatases/deficiency , Protein Binding
13.
Food Funct ; 10(5): 2691-2700, 2019 May 22.
Article in English | MEDLINE | ID: mdl-31026007

ABSTRACT

ß-Thujaplicin, a natural monoterpenoid, has been demonstrated to exert health beneficial activities in chronic diseases. However, it has not been studied in regulating estrogen receptor (ER) negative breast cancer. Here, we investigated the effect of ß-thujaplicin on inhibiting ER-negative basal-like breast cancer and the underlying mechanism of action using an in vitro and in vivo xenograft animal model. ß-Thujaplicin induced G0/G1 phase cell cycle arrest and regulated cell cycle mediators, cyclin D1, cyclin E, and cyclin-dependent kinase 4 (CDK 4), leading to the inhibition of the proliferation of ER-negative basal-like MCF10DCIS.com human breast cancer cells. It also modulated the phosphorylation of protein kinase B (AKT) and glycogen synthase kinase (GSK-3ß) and the protein level of ß-catenin. In an MCF10DCIS.com xenograft animal model, ß-thujaplicin significantly inhibited tumor growth, reduced tumor weight, and regulated the expression of cell cycle proteins, phosphorylation of AKT and GSK-3ß, and protein level of ß-catenin in the tumor tissues. These results demonstrate that ß-thujaplicin can suppress basal-like mammary tumor growth by regulating GSK-3ß/ß-catenin signaling, suggesting that ß-thujaplicin may be a potent chemopreventive agent against the basal-like subtype of breast cancer.


Subject(s)
Breast Neoplasms/drug therapy , Drugs, Chinese Herbal/administration & dosage , Glycogen Synthase Kinase 3 beta/metabolism , Monoterpenes/administration & dosage , Tropolone/analogs & derivatives , beta Catenin/metabolism , Animals , Breast Neoplasms/genetics , Breast Neoplasms/metabolism , Breast Neoplasms/physiopathology , Cell Line, Tumor , Cell Proliferation/drug effects , Chamaecyparis/chemistry , Cyclin D1/genetics , Cyclin D1/metabolism , Cyclin-Dependent Kinase 4/genetics , Cyclin-Dependent Kinase 4/metabolism , Female , G1 Phase Cell Cycle Checkpoints/drug effects , Glycogen Synthase Kinase 3 beta/genetics , Humans , Mice, Inbred BALB C , Phosphorylation/drug effects , Signal Transduction/drug effects , Thuja/chemistry , Tropolone/administration & dosage , beta Catenin/genetics
14.
Biochem Biophys Res Commun ; 506(4): 939-943, 2018 12 02.
Article in English | MEDLINE | ID: mdl-30396570

ABSTRACT

Imatinib mesylate, commercially known as Gleevec/Glivec, is the first targeted anticancer drug that inhibits activity of the tyrosine kinases, c-ABL, c-KIT, and PDGFR. A number of studies have shown that treatment with imatinib mesylate elicits extracellular signal-related kinase (ERK) activation, which, in turn, has been shown to confer radioresistance. Here, we investigated whether treatment with imatinib mesylate protects skin-derived epithelial cells, including normal keratinocytes, immortalized HaCaT and A431 cancer cell lines, from the effects of γ-radiation. ERK activation was detected 30 min after imatinib mesylate treatment in all three cell lines. In cells exposed to γ-irradiation in the presence of imatinib mesylate, this activation of ERK was associated with a reduction in radiation-induced apoptosis and enhanced cell survival. Similar effects of imatinib mesylate treatment were observed following γ-irradiation of a three-dimensional human skin culture system that reproduces a fully differentiated epithelium. Collectively, our findings provide the evidence of a protective effect of imatinib mesylate against the effects of γ-irradiation on epithelial-derived cells, regardless of their malignancy status.


Subject(s)
Epithelial Cells/cytology , Epithelial Cells/enzymology , Extracellular Signal-Regulated MAP Kinases/metabolism , Gamma Rays , Imatinib Mesylate/pharmacology , Cell Line , Cell Survival/drug effects , Cell Survival/radiation effects , Cytoprotection/drug effects , Enzyme Activation/drug effects , Enzyme Activation/radiation effects , Epithelial Cells/drug effects , Epithelial Cells/radiation effects , Humans , Keratinocytes/cytology , Keratinocytes/drug effects , Keratinocytes/radiation effects , MAP Kinase Signaling System/drug effects , Skin/cytology
15.
J Dermatol Sci ; 90(1): 13-20, 2018 Apr.
Article in English | MEDLINE | ID: mdl-29290529

ABSTRACT

BACKGROUND: Histone deacetylase (HDAC) is an enzyme that regulates gene expression, cell cycle arrest, apoptosis and modulation of various pathways. HDAC inhibitors (HDACis) can modulate these pathways by hyper-acetylating target proteins, thereby acting as cancer chemotherapeutic agents. OBJECTIVE: One of HDACis, suberoylanilide hydroxamic acid (SAHA), has been found to regulate the Smad signaling pathway, by an as yet unclear mechanism. This study therefore investigated the mechanism by which SAHA regulates Smad signaling in the melanoma cell line SK-Mel-5. METHODS: Cell proliferation was assessed by MTT assays and fluorescence activated cell sorter (FACS) analysis. The activation of Smad signaling pathway was assessed by western blots analysis. The transcriptions of target genes were checked by RT-PCR and dual luciferase assay. RESULTS: Treatment with SAHA inhibited the proliferation of SK-Mel-5 cells, enhanced the phosphorylation of R-Smad, and up-regulated p21 protein. Surprisingly, R-Smad was also activated by conditioned medium from SAHA-treated SK-Mel-5 cells. An analysis of the conditioned medium showed that activin A was responsible for the activation of R-Smad. SAHA treatment enhanced the level of activin A mRNA, increasing the level of activin A in the secretome. The activity of the SAHA-treated secretome could be eliminated by pre-incubation with antibody to activin A. In addition, activin A supplemented medium could mimic the effect of the SAHA-treated secretome. CONCLUSION: These findings indicate that the anti-cancer function of SAHA is mediated, at least in part, by the upregulation of activin A.


Subject(s)
Activins/metabolism , Antineoplastic Agents/pharmacology , Histone Deacetylase Inhibitors/pharmacology , Signal Transduction/drug effects , Acetylation , Activins/genetics , Antineoplastic Agents/therapeutic use , Cell Line, Tumor , Cell Proliferation/drug effects , Cell Separation/methods , Culture Media, Conditioned/metabolism , Cyclin-Dependent Kinase Inhibitor p21/metabolism , Flow Cytometry/methods , Histone Deacetylase Inhibitors/therapeutic use , Histone Deacetylases/metabolism , Humans , Hydroxamic Acids/pharmacology , Hydroxamic Acids/therapeutic use , Melanoma/drug therapy , RNA, Messenger/metabolism , Smad Proteins, Receptor-Regulated , Up-Regulation , Vorinostat
16.
Biosci Biotechnol Biochem ; 79(6): 1011-7, 2015.
Article in English | MEDLINE | ID: mdl-25666914

ABSTRACT

ß-Thujaplicin, one of the major constituents in Chamaecyparis obtusa, has been demonstrated to exert different health beneficial efficacy, but the role of ß-thujaplicin in regulating mammary tumorigenesis has not been investigated. In this study, we found that ß-thujaplicin significantly suppressed the proliferation through arresting the cell cycle transition from G1 to S phase as well as inhibited the expression of cell cycle-related proteins, cyclin D1, and cyclin-dependent kinase 4 (CDK4) in MCF-7 and T47D luminal subtype breast cancer cells. In addition, estrogen receptor α (ER-α) was down-regulated by ß-thujaplicin via enhanced proteolysis by ubiquitination, which led to cell growth inhibition. These results suggest that ß-thujaplicin may be considered as a potent agent regulating the hormone sensitive mammary tumorigenesis.


Subject(s)
Anticarcinogenic Agents/pharmacology , Breast Neoplasms/pathology , Estrogen Receptor alpha/metabolism , Monoterpenes/pharmacology , Signal Transduction/drug effects , Tropolone/analogs & derivatives , Carcinogenesis/drug effects , Cell Proliferation/drug effects , Cyclin D1/metabolism , Cyclin-Dependent Kinase 4/metabolism , G1 Phase Cell Cycle Checkpoints/drug effects , Humans , MCF-7 Cells , Proteolysis/drug effects , Resting Phase, Cell Cycle/drug effects , Tropolone/pharmacology
17.
J Agric Food Chem ; 62(17): 3759-67, 2014 Apr 30.
Article in English | MEDLINE | ID: mdl-24724627

ABSTRACT

In breast cancer, the cytokine tumor necrosis factor-α (TNF-α) induces cell invasion, although the molecular basis of it has not been clearly elucidated. In this study, we investigated the role of daidzein in regulating TNF-α induced cell invasion and the underlying molecular mechanisms. Daidzein inhibited TNF-α induced cellular migration and invasion in estrogen receptor (ER) negative MCF10DCIS.com human breast cancer cells. TNF-α activated Hedgehog (Hh) signaling by enhancing Gli1 nuclear translocation and transcriptional activity, which resulted in increased invasiveness; these effects were blocked by daidzein and the Hh signaling inhibitors, cyclopamine and vismodegib. Moreover, these compounds suppressed TNF-α induced matrix metalloproteinase (MMP)-9 mRNA expression and activity. Taken together, mammary tumor cell invasiveness was stimulated by TNF-α induced activation of Hh signaling; these effects were abrogated by daidzein, which suppressed Gli1 activation, thereby inhibiting migration and invasion.


Subject(s)
Breast Neoplasms/physiopathology , Glycine max/chemistry , Hedgehogs/metabolism , Isoflavones/pharmacology , Oncogene Proteins/metabolism , Plant Extracts/pharmacology , Signal Transduction/drug effects , Trans-Activators/metabolism , Tumor Necrosis Factor-alpha/metabolism , Animals , Breast Neoplasms/drug therapy , Breast Neoplasms/genetics , Breast Neoplasms/pathology , Cell Line, Tumor , Cell Movement/drug effects , Cell Nucleolus/genetics , Cell Nucleolus/metabolism , Down-Regulation/drug effects , Female , Hedgehogs/genetics , Humans , Neoplasm Invasiveness/genetics , Oncogene Proteins/genetics , Trans-Activators/genetics , Tumor Necrosis Factor-alpha/genetics , Zinc Finger Protein GLI1
SELECTION OF CITATIONS
SEARCH DETAIL
...