Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 7 de 7
Filter
Add more filters










Database
Language
Publication year range
1.
ACS Omega ; 8(48): 46252-46260, 2023 Dec 05.
Article in English | MEDLINE | ID: mdl-38075742

ABSTRACT

Many countries have allowed farmers to feed ß-adrenergic receptor agonists, such as ractopamine (Rac), to animals to improve the quality of their meat. However, Rac consumption can cause health problems for humans; thus, detecting Rac in meat before its packaging is essential. Consequently, this study developed a simple and sensitive electrochemical sensor by modifying a glassy carbon electrode (GCE) with Nafion/silver nanoparticles (Nafion/AgNPs). When this electrochemical sensor is used to detect Rac, electrostatic interaction occurs between Nafion and Rac, and the AgNPs oxidize Rac; thus, the accumulation and electrochemical sensing of Rac are achieved. Differential pulse voltammetry indicated that the as-prepared Nafion/AgNP-GCE sensor exhibited suitable electrochemical sensing ability under optimum conditions (6.0 µL of 0.10% Nafion/AgNPs in a Britton-Robertson buffer solution with a pH of 1.8, an accumulation potential of -0.2 V, and a Rac accumulation duration of 300 s). Moreover, this sensor has an extremely low limit of detection and high sensitivity (1.60 × 10-3 ppm and 2.14 µA/ppm, respectively) in the Rac concentration range 7.50 × 10-3-1.00 ppm. The as-prepared sensor also exhibits satisfactory reproducibility and storage stability, with the corresponding relative standard deviations (RSDs) being 4.27% (n = 5) and 1.56% (n = 10), respectively. The proposed electrochemical sensor was successfully used to determine the Rac content in pig liver samples, with spiked recoveries of 95.2-101.8% and RSDs of 0.55-4.83% being achieved.

2.
Materials (Basel) ; 16(8)2023 Apr 12.
Article in English | MEDLINE | ID: mdl-37109889

ABSTRACT

In the application of WS2 as a surface-enhanced Raman scattering (SERS) substrate, enhancing the charge transfer (CT) opportunity between WS2 and analyte is an important issue for SERS efficiency. In this study, we deposited few-layer WS2 (2-3 layers) on GaN and sapphire substrates with different bandgap characteristics to form heterojunctions using a chemical vapor deposition. Compared with sapphire, we found that using GaN as a substrate for WS2 can effectively enhance the SERS signal, with an enhancement factor of 6.45 × 104 and a limit of detection of 5 × 10-6 M for probe molecule Rhodamine 6G according to SERS measurement. Analysis of Raman, Raman mapping, atomic force microscopy, and SERS mechanism revealed that The SERS efficiency increased despite the lower quality of the WS2 films on GaN compared to those on sapphire, as a result of the increased number of transition pathways present in the interface between WS2 and GaN. These carrier transition pathways could increase the opportunity for CT, thus enhancing the SERS signal. The WS2/GaN heterostructure proposed in this study can serve as a reference for enhancing SERS efficiency.

3.
J Chem Phys ; 157(11): 114702, 2022 Sep 21.
Article in English | MEDLINE | ID: mdl-36137793

ABSTRACT

Searching for efficient surface-enhanced Raman scattering (SERS) substrates remains a challenge. In this study, we used metal-organic chemical vapor deposition to directly grow a pitted a-plane GaN thin film, subsequently covered by a thin Au layer (∼25 nm), for use as a SERS substrate, without the need for any additional etching or lithography process. The SERS substrate containing these micrometer-sized pits provided a low limit of detection (∼10-9 M) for Rhodamine 6G (R6G), with a high enhancement factor (4.27 × 108) relative to normal Raman spectroscopy. Furthermore, Raman spectral mapping indicated that most of the R6G molecules were concentrated in the pits, enhancing the localization of the probe molecules for further analysis. The same molecular localization phenomenon was also effective for polar methylene blue but not for nonpolar paraffin. The molecular aggregation became more ambiguous upon increasing the thickness of the Au layer, suggesting that the polarity of the Ga and N atoms in the pits was responsible for the efficient aggregation of the polar R6G molecules, which could be potentially beneficial for biomedical detection.


Subject(s)
Metal Nanoparticles , Spectrum Analysis, Raman , Gold/chemistry , Metal Nanoparticles/chemistry , Methylene Blue , Paraffin , Silver/chemistry , Spectrum Analysis, Raman/methods
4.
Nanomaterials (Basel) ; 12(5)2022 Feb 25.
Article in English | MEDLINE | ID: mdl-35269274

ABSTRACT

By combining the excellent biocompatibility of molybdenum disulfide (MoS2), excellent surface-enhanced Raman scattering (SERS) activity of Au nanoparticles (Au NPs), and large surface area of Si nanosquare holes (NSHs), a structure in which MoS2 is decorated with Au NPs on Si NSHs, was proposed for SERS applications. The NSH structure fabricated by e-beam lithography possessed 500 nm of squares and a depth of approximately 90 nm. Consequently, a few-layer MoS2 thin films (2-4 layers) were grown by the sulfurization of the MoO3 thin film deposited on Si NSHs. SERS measurements indicated that MoS2 decorated with Au NPs/Si NSHs provided an extremely low limit of detection (ca. 10-11 M) for R6G, with a high enhancement factor (4.54 × 109) relative to normal Raman spectroscopy. Our results revealed that a large surface area of the NSH structure would probably absorb more R6G molecules and generate more excitons through charge transfer, further leading to the improvement of the chemical mechanism (CM) effect between MoS2 and R6G. Meanwhile, the electromagnetic mechanism (EM) produced by Au NPs effectively enhances SERS signals. The mechanism of the SERS enhancement in the structure is described and discussed in detail. By combining the hybrid effects of both CM and EM to obtain a highly efficient SERS performance, MoS2 decorated with Au NPs/Si NSHs is expected to become a new type of SERS substrate for biomedical detection.

5.
Nanomaterials (Basel) ; 11(3)2021 Mar 15.
Article in English | MEDLINE | ID: mdl-33803940

ABSTRACT

Two-dimensional layered material Molybdenum disulfide (MoS2) exhibits a flat surface without dangling bonds and is expected to be a suitable surface-enhanced Raman scattering (SERS) substrate for the detection of organic molecules. However, further fabrication of nanostructures for enhancement of SERS is necessary because of the low detection efficiency of MoS2. In this paper, period-distribution Si/MoS2 core/shell nanopillar (NP) arrays were fabricated for SERS. The MoS2 thin films were formed on the surface of Si NPs by sulfurizing the MoO3 thin films coated on the Si NP arrays. Scanning electron microscopy, Raman spectroscopy, and X-ray photoelectron spectroscopy were performed to characterize Si/MoS2 core-shell nanostructure. In comparison with a bare Si substrate and MoS2 thin film, the use of Si/MoS2 core-shell NP arrays as SERS substrates enhances the intensity of each SERS signal peak for Rhodamine 6G (R6G) molecules, and especially exhibits about 75-fold and 7-fold enhancements in the 1361 cm-1 peak signal, respectively. We suggest that the Si/MoS2 core-shell NP arrays with larger area could absorb more R6G molecules and provide larger interfaces between MoS2 and R6G molecules, leading to higher opportunity of charge transfer process and exciton transitions. Therefore, the Si/MoS2 core/shell NP arrays could effectively enhance SERS signal and serve as excellent SERS substrates in biomedical detection.

6.
Materials (Basel) ; 12(7)2019 Apr 10.
Article in English | MEDLINE | ID: mdl-30974754

ABSTRACT

The optical properties of WSe2-layered crystals doped with 0.5% niobium (Nb) grown by the chemical vapor transport method were characterized by piezoreflectance (PzR), photoconductivity (PC) spectroscopy, frequency-dependent photocurrent, and time-resolved photoresponse. With the incorporation of 0.5% Nb, the WSe2 crystal showed slight blue shifts in the near band edge excitonic transitions and exhibited strongly enhanced photoresponsivity. Frequency-dependent photocurrent and time-resolved photoresponse were measured to explore the kinetic decay processes of carriers. Our results show the potential application of layered crystals for photodetection devices based on Nb-doped WSe2-layered crystals.

7.
J Nanosci Nanotechnol ; 8(9): 4395-8, 2008 Sep.
Article in English | MEDLINE | ID: mdl-19049031

ABSTRACT

We describe synthesis of In2O3 nanoloquats grown by thermal evaporation under different oxygen flow rates and temperatures. Gold nanoparticles were used the catalysts and were dispersed on the silicon wafer to assist growth of In2O3 nanoloquats. The nanostructures of In2O3 nanoloquats were characterized by scanning electron microscopy, transmission electron microscopy and X-ray diffraction. The photoluminescence study reveals that In2O3 nanoloquats could emit different broadband luminescence peaks in the range of 410-620 nm by tuning different oxygen flow rates and temperatures. The wide tuning range in the emission peaks of In2O3 nanoloquats has potential in applications of white light illumination.

SELECTION OF CITATIONS
SEARCH DETAIL
...