Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters










Database
Language
Publication year range
1.
J Environ Manage ; 318: 115586, 2022 Sep 15.
Article in English | MEDLINE | ID: mdl-35753126

ABSTRACT

Ameliorative effects of sheep slaughterhouse waste-derived soil amendments (struvite, blood meal, bone meal) were explored and quantified by a series of comparative greenhouse trials. A scoring matrix system was developed for 25 different test plants using 300 agricultural measurements obtained for three basic growth parameters (fresh-dry plant weights and plant heights) and four different fertilizer sources including solid vermicompost. More than 70% of NH4+-N recovery from sheep slaughterhouse wastewater was achieved using a chemical combination of MgCl2.6H2O + NaH2PO4.2H2O, a molar ratio of Mg2+:NH4+-N:PO43-P = 1.2:1:1, a reaction pH of 9.0, an initial NH4+-N concentration of 240 mg/L, and a reaction time of 15 min. According to SEM micrographs, surface morphology of struvite exhibited a highly porous structure composed of irregularly shaped crystals of various sizes (11.34-79.38 µm). FTIR spectroscopy verified the active functional groups on the proximity of all fertilizer sources within the spectral range of 500-3900 cm-1. TGA-DTG-DSC thermograms of struvite revealed that the mass loss occurred in two temperature regions and reached a maximum mass loss rate of 1.63%/min at 317 °C. The average percentages of increase (57.55-100.62%) and performance points (69-79) corroborated that the fertility value of struvite ranked first on average in cultivation of the analyzed plant species. Findings of this agro-valorization study confirmed that sheep slaughterhouse waste-derived fertilizers could be a beneficial way to promote bio-waste management and environmentally friendly agriculture.


Subject(s)
Fertilizers , Soil , Abattoirs , Animals , Fertilizers/analysis , Magnesium Compounds/chemistry , Phosphates/chemistry , Phosphorus , Sheep , Struvite/chemistry , Wastewater/chemistry
2.
Braz J Microbiol ; 52(4): 1779-1790, 2021 Dec.
Article in English | MEDLINE | ID: mdl-34510399

ABSTRACT

Microalgae cultivation for exopolysaccharide production has getting more attention as a result of their high hydrocarbon biosynthesis skill. The aim of this study is to examine the exopolysaccharide production potential of different species of microalgae. In this context, exopolysaccharides were produced from Chlorella minutissima, Chlorella sorokiniana and Botryococcus braunii microalgae and the effects of carbon and nitrogen content in the growth medium and illumination time on exopolysaccharide production were analyzed statistically using Box-Behnken experimental design. In addition, techno-economic assessment of exopolysaccharide production were also performed by using the most productive microalgae and optimum conditions determined in this study. As a result of the experiments, it was seen that C. minutissima, C. sorokiniana and B. braunii produced 0.245 ± 0.0025 g/L, 0.163 ± 0.0016 g/L and 0.117 ± 0.0007 g/L exopolysaccharide, respectively. Statistically, it was observed that there was an inverse relationship between the exopolysaccharide production and investigated parameters such as illumination period and carbon and nitrogen amounts of culture mediums. The techno-economic assessment comprising microalgal exopolysaccharide (EPS) bioprocess was carried out, and it showed that the system can be considered economically viable, yet can be improved with biorefinery approach.


Subject(s)
Microalgae , Polysaccharides , Biomass , Carbon/analysis , Culture Media/chemistry , Industrial Microbiology/economics , Microalgae/chemistry , Nitrogen/analysis , Polysaccharides/biosynthesis , Polysaccharides/chemistry
3.
Arch Microbiol ; 202(3): 455-471, 2020 Apr.
Article in English | MEDLINE | ID: mdl-31696248

ABSTRACT

It is known that cell extracts of various algae have antifungal activity against microorganisms in vitro. Antifungal activities of Ulva lactuca, Chlorella vulgaris, Chlorella minutissima, and Chlorella protothecoides were investigated against: Aspergillus niger, Alternaria alternata, and Penicillium expansum fungi to present their fungicide potentials. Aspergillus niger, Alternaria sp., and Penicillium expansum are typical soft-rotting fungi and cause important loss of apple fruit in the storage. In vitro antifungal activity was evaluated by agar disc diffusion assay against pathogenic apple rot fungi. As a result, almost all of the extracts obtained from algae species were revealed to have antifungal activity against selected fungal pathogens. Free radical-scavenging activity of the extracts was determined with 1,1-diphenyl-2 picryl hydrazyl (DPPH) free radical-scavenging method. Extract of C. protothecoides was determined to have a stronger antioxidant activity than other algae extracts. This study reveals that the potential of algae should be investigated for the production of natural fungicide for pharmaceutical and food industries.


Subject(s)
Chlorella vulgaris/chemistry , Fungicides, Industrial/pharmacology , Malus/microbiology , Plant Extracts/pharmacology , Ulva/chemistry , Alternaria/drug effects , Alternaria/growth & development , Antifungal Agents/pharmacology , Aspergillus/drug effects , Aspergillus/growth & development , Fungicides, Industrial/chemistry , Microbial Sensitivity Tests , Penicillium/drug effects , Penicillium/growth & development , Plant Diseases/microbiology , Plant Extracts/chemistry
4.
Waste Manag Res ; 36(11): 1100-1105, 2018 Nov.
Article in English | MEDLINE | ID: mdl-30249162

ABSTRACT

In recent years, researchers focused their attention on biogas production more than ever to meet the energy demand. Especially, biogas obtained from algal wastes has become a trending research area owing to the high content of volatile solids in algae. The main purpose of this study is to determine the biogas production potential from algal wastes and examine the effect of temperature and particle size parameters on biogas yield. A comparison was made between the biogas production potential of microalgal wastes, obtained after oil extraction, and macroalgal wastes collected from coastal areas. It was found that algal biogas yield is directly proportional to temperature and inversely proportional to particle size. Optimal conditions for biogas production from algal wastes were determined as the temperature of 55 °C, a particle size of 200 µm, a residence time of 30 days and an alga-inoculum ratio of 1:4 (w:w). Highest biogas yield obtained under these conditions was found as 342.59 cm3 CH4 g-1 VS with Ulva lactuca. Under thermophilic conditions, both micro- and macroalgal biogas yields were comparable. It can be concluded that algal biomass is a good source for biogas production, although further research is needed to increase biogas yield and quality.


Subject(s)
Biofuels , Microalgae , Biomass , Methane , Plants , Temperature
SELECTION OF CITATIONS
SEARCH DETAIL
...