Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 10 de 10
Filter
Add more filters











Publication year range
1.
Psychoneuroendocrinology ; 122: 104906, 2020 12.
Article in English | MEDLINE | ID: mdl-33059202

ABSTRACT

The two peptides phoenixin and nesfatin-1 are colocalized in hypothalamic nuclei involved in the mediation of food intake and behavior. Phoenixin stimulates food intake and is anxiolytic, while nesfatin-1 is an anorexigenic peptide shown to increase anxiety and anhedonia. Interestingly, central activation of both peptides can be stimulated by restraint stress giving rise to a role in the mediation of stress. Thus, the aim of the study was to test whether also peripheral circulating levels of NUCB2/nesfatin-1 and phoenixin are altered by restraint stress. Male ad libitum fed Sprague Dawley rats equipped with a chronic intravenous catheter were subjected to restraint stress and plasma levels of NUCB2/nesfatin-1, phoenixin and cortisol were measured over a period of 240 min and compared to levels of freely moving rats. Peripheral cortisol levels were significantly increased in restrained rats at 30, 60, 120 and 240 min compared to controls (p < 0.05). In contrast, restraint stress decreased plasma phoenixin levels at 15 min compared to unstressed conditions (0.8-fold, p < 0.05). Circulating NUCB2/nesfatin-1 levels were increased only at 240 min in restrained rats compared to those in unstressed controls (1.3-fold, p < 0.05). In addition, circulating NUCB2/nesfatin-1 levels correlated positively with phoenixin levels (r = 0.378, p < 0.001), while neither phoenixin nor nesfatin-1 were associated with cortisol levels (r = 0.0275, and r=-0.143, p> 0.05). These data suggest that both peptides, NUCB2/nesfatin-1 and phoenixin, are affected by restraint stress, although less pronounced than circulating cortisol.


Subject(s)
Nucleobindins/metabolism , Peptide Hormones/metabolism , Stress, Psychological/metabolism , Animals , Anxiety/blood , Anxiety Disorders/blood , Brain/metabolism , Calcium-Binding Proteins/metabolism , DNA-Binding Proteins/metabolism , Hypothalamus/metabolism , Male , Nerve Tissue Proteins/metabolism , Nucleobindins/blood , Nucleobindins/physiology , Peptide Hormones/blood , Peptide Hormones/physiology , Rats , Rats, Sprague-Dawley , Restraint, Physical/psychology , Stress, Psychological/physiopathology
2.
Biochem Biophys Res Commun ; 529(3): 773-777, 2020 08 27.
Article in English | MEDLINE | ID: mdl-32736706

ABSTRACT

Nesfatin-1, a pleotropic peptide, was recently implicated in the regulation of anxiety and depression-like behavior in rats. However, the underlying mechanisms remain unclear so far. Thus, this study aimed to investigate the role of endogenous nesfatin-1 in the mediation of anxiety and depression-like behavior induced by corticotropin-releasing factor (CRF). Therefore, normal weight male intracerebroventricularly (icv) cannulated Sprague Dawley rats received two consecutive icv injections of anti-nesfatin-1 antibody or IgG control antibody followed by CRF or saline, before being exposed to a behavioral test. In the elevated zero maze test, assessing anxiety and explorative behavior, blockade of nesfatin-1 using an anti-nesfatin-1 antibody under basal conditions increased the number of entries into the open arms compared to control antibody/vehicle (1.6-fold, p < 0.05) and the time in open arms compared to the other groups (p < 0.05). Control antibody/CRF-treated animals tended to spend less time in the open arms compared to control antibody/vehicle (0.7-fold, p = 0.17), an effect not altered by the nesfatin-1 antibody (control antibody/CRF-treated animals vs. nesfatin-1 antibody/CRF group, p = 1.00). In the novelty-induced hypophagia test, assessing anhedonia as part of depression-like behavior, no significant differences were observed between the four groups for the latency to the first bout, number of bouts and the amount of palatable snack eaten (p > 0.05). In summary, CRF tended to increase anxiety and explorative behavior an effect not altered by blockade of nesfatin-1, whereas no significant effect of CRF on anhedonia was observed. Blockade of endogenous nesfatin-1 significantly decreased anxiety-like behavior giving rise to a physiological role of brain nesfatin-1 in the mediation of anxiety.


Subject(s)
Anti-Anxiety Agents/therapeutic use , Antibodies/therapeutic use , Anxiety/chemically induced , Anxiety/drug therapy , Corticotropin-Releasing Hormone , Nucleobindins/antagonists & inhibitors , Animals , Anxiety/prevention & control , Depression/chemically induced , Depression/drug therapy , Depression/prevention & control , Male , Rats, Sprague-Dawley
3.
Brain Res ; 1743: 146904, 2020 09 15.
Article in English | MEDLINE | ID: mdl-32474019

ABSTRACT

Phoenixin is a recently discovered peptide, which has been associated with reproduction, anxiety and food intake. Based on a considerable co-localization it has been linked to nesfatin-1, with a possible antagonistic mode of action. Since nesfatin-1 is known to play a role in anxiety and the response to stress, this study aims to investigate the effects of a well-established psychological stress model, restraint stress, on phoenixin-expressing brain nuclei and phoenixin expression in rats. Male Sprague-Dawley rats were subjected to restraint stress (n = 8) or left undisturbed (control, n = 6) and the brains processed for c-Fos- and phoenixin immunohistochemistry. The number of c-Fos expressing cells was counted and phoenixin expression assessed semiquantitatively. Restraint stress significantly increased c-Fos expression in the dorsal motor nucleus of vagus nerve (DMN, 52-fold, p < 0.001), raphe pallidus (RPa, 15-fold, p < 0.001), medial part of the nucleus of the solitary tract (mNTS, 16-fold, p < 0.001), central amygdaloid nucleus, medial division (CeM, 9-fold, p = 0.01), supraoptic nucleus (SON, 9-fold, p < 0.001) and the arcuate nucleus (Arc, 2.5-fold, p < 0.03) compared to control animals. Also phoenixin expression significantly increased in the DMN (17-fold, p < 0.001), RPa (2-fold, p < 0.001) and mNTS (1.6-fold, p < 0.001) with positive correlations between c-Fos and phoenixin (r = 0.74-0.85; p < 0.01) in these nuclei. This pattern of activation suggests an involvement of phoenixin in response to restraint stress. Whether phoenixin mediates stress effects or is activated in a counterbalancing fashion will have to be further investigated.


Subject(s)
Brain/metabolism , Peptide Hormones/metabolism , Stress, Psychological/physiopathology , Animals , Immunohistochemistry , Male , Rats , Rats, Sprague-Dawley , Restraint, Physical
4.
Brain Res ; 1715: 188-195, 2019 07 15.
Article in English | MEDLINE | ID: mdl-30930149

ABSTRACT

Phoenixin is a novel neuropeptide initially associated with reproductive functions, but subsequently also with feeding behavior. Nesfatin-1 is also involved in the regulation of food intake and has been shown to largely colocalize with phoenixin in the rat brain; however, a functional link is missing so far. The current study investigated whether phoenixin activates nesfatin-1 immunoreactive nuclei in the rat brain. Male Sprague Dawley rats chronically equipped with an intracerebroventricular cannula were injected with vehicle (5 µl ddH2O) or phoenixin (1.7 nmol in 5 µl ddH2O, n = 5-6 group). Behavior was assessed manually and c-Fos as well as nesfatin-1 immunoreactivity using immunohistochemistry. Phoenixin significantly increased feeding and drinking behavior as well as locomotor activity compared to vehicle (p < 0.01). Moreover, phoenixin injected intracerebroventricularly (icv) activated several nuclei throughout the rat brain as assessed using c-Fos; the number of c-Fos/nesfatin-1 immunoreactive neurons was increased in the lateral septal nucleus (4-fold), supraoptic nucleus (107-fold), paraventricular nucleus (6-fold) and the nucleus of the solitary tract (18-fold) compared to vehicle (p < 0.05). In summary, phoenixin activates several nesfatin-1 immunoreactive nuclei in the rat brain. This activation may play a role in the modulation of food intake.


Subject(s)
Feeding Behavior/drug effects , Nucleobindins/metabolism , Peptide Hormones/pharmacology , Animals , Calcium-Binding Proteins/metabolism , DNA-Binding Proteins/metabolism , Eating/drug effects , Hypothalamus/metabolism , Infusions, Intraventricular , Male , Nerve Tissue Proteins/metabolism , Neurons/metabolism , Paraventricular Hypothalamic Nucleus/metabolism , Peptide Hormones/metabolism , Proto-Oncogene Proteins c-fos/metabolism , Rats , Rats, Sprague-Dawley , Supraoptic Nucleus/metabolism
5.
J Physiol Pharmacol ; 68(3): 345-354, 2017 Jun.
Article in English | MEDLINE | ID: mdl-28820391

ABSTRACT

Treatment of eating disorders like obesity or anorexia is challenging. Options are limited and new approaches desired. An interesting approach is the application of deep brain stimulation (DBS). The nucleus accumbens (NAcc) is part of the food reward system. A pilot study reported that DBS of the NAcc shell modulates food intake and body weight in rats. Underlying mechanisms such as the food intake microstructure are unknown so far. Normal weight female Sprague-Dawley rats were equipped with a custom-made DBS electrode placed unilaterally in the NAcc shell. Biphasic stimulation was performed for seven days. Body weight and food intake including the microstructure were assessed over the experimental period. Behavior was monitored manually. DBS tended to increase body weight gain (28.1 ± 5.4 g) compared to sham-stimulated controls (16.7 ± 3.4, P = 0.05) without affecting daily food intake (P > 0.05). Further analyses showed that light phase food intake was stimulated, whereas dark phase food intake was decreased in the DBS group (P < 0.05). During the light phase bout frequency (+50%), bout duration (+64%), meal duration (+71%) and overall time spent in meals (+92%) were increased in DBS rats (P < 0.05), while during the dark phase no alterations were observed (P > 0.05). Behavior did not show differences regarding overall eating and drinking behavior (including food/water approach), grooming or locomotion (P > 0.05). Summarized, although overall food intake was not changed by DBS, light phase food intake was stimulated likely via a reduction of satiation.


Subject(s)
Deep Brain Stimulation , Eating/physiology , Nucleus Accumbens/physiology , Animals , Behavior, Animal , Body Weight , Female , Rats, Sprague-Dawley
6.
J Physiol Pharmacol ; 66(4): 493-503, 2015 Aug.
Article in English | MEDLINE | ID: mdl-26348074

ABSTRACT

The ghrelin acylating enzyme ghrelin-O-acyltransferase (GOAT) was recently identified and implicated in several biological functions. However, the effects on food intake warrant further investigation. While several genetic GOAT mouse models showed normal food intake, acute blockade using a GOAT inhibitor resulted in reduced food intake. The underlying food intake microstructure remains to be established. In the present study we used an automated feeding monitoring system to assess food intake and the food intake microstructure. First, we validated the basal food intake and feeding behavior in rats using the automated monitoring system. Afterwards, we assessed the food intake microstructure following intraperitoneal injection of the GOAT inhibitor, GO-CoA-Tat (32, 96 and 288 µg/kg) in freely fed male Sprague-Dawley rats. Rats showed a rapid habituation to the automated food intake monitoring system and food intake levels were similar compared to manual monitoring (P = 0.43). Rats housed under these conditions showed a physiological behavioral satiety sequence. Injection of the GOAT inhibitor resulted in a dose-dependent reduction of food intake with a maximum effect observed after 96 mg/kg (-27%, P = 0.03) compared to vehicle. This effect was delayed in onset as the first meal was not altered and lasted for a period of 2 h. Analysis of the food intake microstructure showed that the anorexigenic effect was due to a reduction of meal frequency (-15%, P = 0.04), whereas meal size (P = 0.29) was not altered compared to vehicle. In summary, pharmacological blockade of GOAT reduces dark phase food intake by an increase of satiety while satiation is not affected.


Subject(s)
Acyltransferases/antagonists & inhibitors , Appetite Depressants/pharmacology , Eating/drug effects , Enzyme Inhibitors/pharmacology , Peptides/pharmacology , Animals , Appetite Depressants/administration & dosage , Dose-Response Relationship, Drug , Feeding Behavior/drug effects , Ghrelin/metabolism , Injections, Intraperitoneal , Male , Peptides/administration & dosage , Rats , Rats, Sprague-Dawley , Satiety Response/drug effects
7.
J Physiol Pharmacol ; 61(4): 399-407, 2010 Aug.
Article in English | MEDLINE | ID: mdl-20814067

ABSTRACT

The consequences of selective activation of brain somatostatin receptor-2 (sst2) were assessed using the sst2 agonist, des-AA(1,4-6,11-13)-[DPhe(2),Aph7(Cbm),DTrp(8)]-Cbm-SST-Thr-NH2. Food intake (FI) was monitored in ad libitum fed rats chronically implanted with an intracerebroventricular (i.c.v.) cannula. The sst(2) agonist injected i.c.v. at 0.1 and 1 microg/rat dose-dependently increased light phase FI from 2 to 6 hours post injection (2.3+/-0.5 and 7.5+/-1.2 respectively vs. vehicle: 0.2+/-0.2 g/300 g bw, P<0.001). Peptide action was reversed by i.c.v. injection of the sst2 antagonist, des-AA(1,4-6,11-13)-[pNO(2)-Phe(2),DCys(3),Tyr(7),DAph(Cbm)8]-SST-2Nal-NH(2) and not reproduced by intraperitoneal injection (30 microg/rat). The sst(2) antagonist alone i.c.v. significantly decreased the cumulative 14-hours dark phase FI by 29.5%. Other behaviors, namely grooming, drinking and locomotor activity were also increased by the sst(2) agonist (1 microg/rat, i.c.v.) as monitored during the 2(nd) hour post injection while gastric emptying of solid food was unaltered. Rectal temperature rose 1 hour after the sst(2) agonist (1 microg/rat, i.c.v.) with a maximal response maintained from 1 to 4 hours post injection. These data show that selective activation of the brain sst(2) receptor induces a feeding response in the light phase not associated with changes in gastric emptying. The food intake reduction following sst(2) receptor blockade suggests a role of this receptor in the orexigenic drive during the dark phase.


Subject(s)
Body Temperature/physiology , Brain/metabolism , Eating/physiology , Grooming/physiology , Receptors, Somatostatin/metabolism , Somatostatin/metabolism , Animals , Body Temperature/drug effects , Brain/drug effects , Eating/drug effects , Gastric Emptying/drug effects , Gastric Emptying/physiology , Grooming/drug effects , Male , Rats , Rats, Sprague-Dawley , Receptors, Somatostatin/agonists , Receptors, Somatostatin/antagonists & inhibitors , Somatostatin/analogs & derivatives , Somatostatin/pharmacology
8.
Gut ; 55(6): 788-92, 2006 Jun.
Article in English | MEDLINE | ID: mdl-15994217

ABSTRACT

BACKGROUND AND AIMS: Ghrelin, the natural ligand of the growth hormone secretagogue receptor 1a, is the most powerful peripherally active orexigenic agent known. In rodents, ghrelin administration stimulates growth hormone release, food intake, and adiposity. Because of these effects, blocking of ghrelin has been widely discussed as a potential treatment for obesity. Spiegelmer NOX-B11 is a synthetic l-oligonucleotide, which was previously shown to bind ghrelin. We examined the effects of NOX-B11 on ghrelin induced neuronal activation and food intake in non-fasted rats. METHODS: Animals received various doses of NOX-B11, inactive control Spiegelmer, or vehicle intravenously. Ghrelin or vehicle was administered intraperitoneally 12 hours later and food intake was measured over four hours. Neuronal activation was assessed as c-Fos-like immunoreactivity in the arcuate nucleus. RESULTS: Treatment with NOX-B11 30 nmol suppressed ghrelin induced c-Fos-like immunoreactivity in the arcuate nucleus and blocked the ghrelin induced increase in food intake within the first half hour after ghrelin injection (mean 1.13 (SEM 0.59) g/kg body weight; 4.94 (0.63) g/kg body weight versus 0.58 (0.58) g/kg body weight; p<0.0001). Treatment with NOX-B11 1 nmol or control Spiegelmer had no effect whereas treatment with NOX-B11 10 nmol showed an intermediate effect on ghrelin induced food intake. CONCLUSIONS: Spiegelmer NOX-B11 suppresses ghrelin induced food intake and c-Fos induction in the arcuate nucleus in rats. The use of an anti-ghrelin Spiegelmer could be an innovative new approach to inhibit the biological action of circulating ghrelin. This may be of particular relevance to conditions associated with elevated plasma ghrelin, such as the Prader-Willi syndrome.


Subject(s)
Anti-Obesity Agents/pharmacology , Arcuate Nucleus of Hypothalamus/drug effects , Eating/drug effects , Oligonucleotides/pharmacology , Peptide Hormones/antagonists & inhibitors , Animals , Arcuate Nucleus of Hypothalamus/metabolism , Dose-Response Relationship, Drug , Ghrelin , Male , Oligonucleotides/chemistry , Peptide Hormones/pharmacology , Proto-Oncogene Proteins c-fos/metabolism , Rats , Rats, Sprague-Dawley
9.
Neurogastroenterol Motil ; 16(4): 489-96, 2004 Aug.
Article in English | MEDLINE | ID: mdl-15306004

ABSTRACT

Many neuropeptides participating in the hypothalamic control of feeding behaviour and satiety have been shown to be additionally involved in the autonomic control of gastrointestinal (GI) functions. Recently, the neuropeptide cocaine- and amphetamine-regulated transcript (CART) has been indicated to function as an anorectic substance in the brain. In the present study we examine the hypothesis that CART is involved in the modulation of GI motility. Colonic transit time was measured after peripheral and central injection of CART in fed and freely moving Sprague-Dawley rats. Intracerebroventricular injection of synthetic CART (55-102) (190 pmol and 1.9 nmol per 10 microL and saline controls) decreased the colonic transit time of conscious rats up to 46%. In contrast, i.p. injection of CART (55-102) (1.9 nmol and 19 nmol kg(-1) BW and saline controls) had no effect on colonic motility. Central administration of a CRF receptor antagonist (2.8 nmol) prior to central CART administration antagonized the CART-induced stimulation of colonic transit. Pretreatment with the peripherally acting cholinergic antagonist atropin methyl nitrate (0.1 mg kg(-1) i.p.) blocked the stimulatory CART effect on colonic motor function. The results suggest that CART acts in the central nervous system to modulate behavioural motor function via a central CRF receptor-dependent mechanism and peripheral cholinergic pathways.


Subject(s)
Cholinergic Fibers/drug effects , Colon/drug effects , Gastrointestinal Motility/drug effects , Peptide Fragments/pharmacology , Receptors, Corticotropin-Releasing Hormone/physiology , Animals , Colon/physiology , Consciousness/drug effects , Consciousness/physiology , Corticotropin-Releasing Hormone/pharmacology , Dose-Response Relationship, Drug , Eating/drug effects , Eating/physiology , Gastrointestinal Motility/physiology , Male , Nerve Tissue Proteins , Neural Pathways/drug effects , Neural Pathways/physiology , Rats , Rats, Sprague-Dawley , Receptors, Corticotropin-Releasing Hormone/antagonists & inhibitors
10.
Plant Physiol ; 122(2): 369-78, 2000 Feb.
Article in English | MEDLINE | ID: mdl-10677430

ABSTRACT

The expression of nitrilase in Arabidopsis during the development of the clubroot disease caused by the obligate biotroph Plasmodiophora brassicae was investigated. A time course study showed that only during the exponential growth phase of the clubs was nitrilase prominently enhanced in infected roots compared with controls. NIT1 and NIT2 are the nitrilase isoforms predominantly expressed in clubroot tissue, as shown by investigating promoter-beta-glucuronidase fusions of each. Two peaks of beta-glucuronidase activity were visible: an earlier peak (21 d post inoculation) consisting only of the expression of NIT1, and a second peak at about 32 d post inoculation, which predominantly consisted of NIT2 expression. Using a polyclonal antibody against nitrilase, it was shown that the protein was mainly found in infected cells containing sporulating plasmodia, whereas in cells of healthy roots and in uninfected cells of inoculated roots only a few immunosignals were detected. To determine which effect a missing nitrilase isoform might have on symptom development, the P. brassicae infection in a nitrilase mutant (nit1-3) of Arabidopsis was investigated. As a comparison, transgenic plants overexpressing NIT2 under the control of the cauliflower mosaic virus 35S promoter were studied. Root galls were smaller in nit1-3 plants compared with the wild type. The phenotype of smaller clubs in the mutant was correlated with a lower free indole-3-acetic acid content in the clubs compared with the wild type. Overexpression of nitrilase did not result in larger clubs compared with the wild type. The putative role of nitrilase and auxins during symptom development is discussed.


Subject(s)
Aminohydrolases/metabolism , Arabidopsis/enzymology , Plant Diseases , Aminohydrolases/genetics
SELECTION OF CITATIONS
SEARCH DETAIL