Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 46
Filter
Add more filters










Publication year range
1.
Neurosci Lett ; 792: 136938, 2023 01 01.
Article in English | MEDLINE | ID: mdl-36341925

ABSTRACT

BACKGROUND: Research on the peptide phoenixin has increased in recent years and greatly widened the known scope of its functions since its discovery in 2013. Involvement of phoenixin has since been shown in anxiety, food intake, reproduction as well as emotional and immunological stress. To further evaluate its involvement in stress reactions, this study aims to investigate the effects of abdominal surgery, a well-established physical stressor, on the activity of phoenixin-immunoreactive brain nuclei. METHODS: Male Sprague-Dawley rats (n = 6/group) were subjected to either an abdominal surgery stress protocol or a sham operation. Animals in the verum group were anesthetized, the abdominal cavity opened and the cecum palpated, followed by closing of the abdomen and recovery. Sham operated animals only received inhalation anesthesia and time for recovery. All animals were subsequently sacrificed and brains processed and evaluated for c-Fos activity as well as phoenixin density. RESULTS: Compared to control, abdominal surgery significantly increased c-Fos activity in the paraventricular nucleus (PVN, 6.4-fold, p < 0.001), the medial part of the nucleus of the solitary tract (mNTS, 3.8-fold, p < 0.001), raphe pallidus (RPa, 3.6-fold, p < 0.001), supraoptic nucleus (SON, 3.2-fold, p < 0.001), ventrolateral medulla (VLM, also called A1C1, 3.0-fold, p < 0.001), dorsal motor nucleus of vagus (DMN, 2.9-fold, p < 0.001), locus coeruleus (LC, 1.8-fold, p < 0.01) and Edinger-Westphal nucleus (EW, 1.6-fold, p < 0.05), while not significantly altering c-Fos activity in the amygdala (CeM, 1.3-fold, p > 0.05). Phoenixin immunoreactivity was not significantly affected by abdominal surgery (p > 0.05). CONCLUSION: The observed abdominal surgery-related increase in activity in phoenixin immunoreactive nuclei compared to sham surgery controls supports the hypothesis of an involvement of phoenixin in stress reactions. Interestingly, various psychological and physical stressors lead to specific changes in activity and immunoreactivity in phoenixin-containing nuclei, giving rise to a stressor-specific involvement of phoenixin.


Subject(s)
Paraventricular Hypothalamic Nucleus , Supraoptic Nucleus , Animals , Rats , Male , Rats, Sprague-Dawley , Supraoptic Nucleus/metabolism , Paraventricular Hypothalamic Nucleus/metabolism , Proto-Oncogene Proteins c-fos/metabolism , Brain/metabolism
2.
J Clin Med ; 11(17)2022 Aug 30.
Article in English | MEDLINE | ID: mdl-36079049

ABSTRACT

Spexin (SPX) is a novel, widely expressed peptide, with anorexigenic effects demonstrated in animal models and negatively correlated with body mass index (BMI) in humans. It increases locomotor activity in rodents and is elevated in human plasma following exercise. Studies have also shown an effect of stress and anxiety on SPX's expression in different brain structures in animals. The relationships between plasma SPX and physical activity, body composition, and patient-reported outcomes such as perceived stress, depressiveness, anxiety, and eating behaviors are unknown and were examined in this study over a wide BMI range. A total of 219 female (n = 68 with anorexia nervosa; n = 79 with obesity; n = 72 with normal weight) inpatients were enrolled. Perceived stress (PSQ 20), anxiety (GAD 7), depressiveness (PHQ 9), and eating disorder pathology (EDI 2), as well as BMI, bioimpedance analysis, and accelerometry, were measured cross-sectionally at the beginning of treatment and correlated with plasma SPX levels (measured by ELISA) obtained at the same time. Plasma SPX levels were negatively associated with BMI (r = −0.149, p = 0.027) and body fat mass (r = −0.149, p = 0.04), but did not correlate with perceived stress, anxiety, depressiveness, eating behavior, energy expenditure, and physical activity (p > 0.05). The results replicate the negative correlation of SPX with BMI and fat mass, but do not support the hypothesis that peripheral SPX plays a role in the regulation of stress, depressiveness, anxiety, eating behavior, or physical activity.

3.
Brain Sci ; 12(2)2022 Jan 20.
Article in English | MEDLINE | ID: mdl-35203899

ABSTRACT

Due to phoenixin's role in restraint stress and glucocorticoid stress, as well as its recently shown effects on the inflammasome, we aimed to investigate the effects of lipopolysaccharide (LPS)-induced inflammatory stress on the activity of brain nuclei-expressing phoenixin. Male Sprague Dawley rats (n = 6/group) were intraperitoneally injected with either LPS or control (saline). Brains were processed for c-Fos and phoenixin immunohistochemistry and the resulting slides were evaluated using ImageJ software. c-Fos was counted and phoenixin was evaluated using densitometry. LPS stress significantly increased c-Fos expression in the central amygdaloid nucleus (CeM, 7.2-fold), supraoptic nucleus (SON, 34.8 ± 17.3 vs. 0.0 ± 0.0), arcuate nucleus (Arc, 4.9-fold), raphe pallidus (RPa, 5.1-fold), bed nucleus of the stria terminalis (BSt, 5.9-fold), dorsal motor nucleus of the vagus nerve (DMN, 89-fold), and medial part of the nucleus of the solitary tract (mNTS, 121-fold) compared to the control-injected group (p < 0.05). Phoenixin expression also significantly increased in the CeM (1.2-fold), SON (1.5-fold), RPa (1.3-fold), DMN (1.3-fold), and mNTS (1.9-fold, p < 0.05), leading to a positive correlation between c-Fos and phoenixin in the RPa, BSt, and mNTS (p < 0.05). In conclusion, LPS stress induces a significant increase in activity in phoenixin immunoreactive brain nuclei that is distinctively different from restraint stress.

4.
Brain Res ; 1746: 147006, 2020 11 01.
Article in English | MEDLINE | ID: mdl-32628919

ABSTRACT

Neuronatin (Nnat) is involved in the regulation of cellular molecular signaling and appears to be also linked to metabolic processes. The gastrointestinal peptides cholecystokinin (CCK) and bombesin (BN) have an effect on the short-term inhibition of food intake and induce neuronal activation in different brain nuclei, prominently in the nucleus of the solitary tract (NTS) involved in the modulation of food intake. The aim of the study was to examine if Nnat immunoreactivity is detectable in the NTS, and whether peripheral CCK-8S or BN cause c-Fos activation of Nnat neurons. Non-fasted male Sprague-Dawley rats received an intraperitoneal (i.p.) injection of 5.2 or 8.7 nmol CCK-8S/kg or 26 or 32 nmol BN/kg (n = 4 all groups) or vehicle solution (0.15 M NaCl; n = 7). The number of c-Fos neurons was determined 90 min post injection in the NTS and dorsal motor nucleus of the vagus (DMV). We observed Nnat immunoreactive neurons in the NTS and DMV. CCK-8S (25-fold and 51-fold, p = 0.025 and p = 0.001) and BN (31-fold and 59-fold, p = 0.007 and p = 0.001) at both doses increased the number of c-Fos positive neurons in the NTS. CCK and BN did not show a significant effect in the DMV. Both doses of CCK-8S (24-fold and 48-fold p = 0.011 and p = 0.001) and bombesin (31-fold and 56-fold, p = 0.002 and p = 0.001) increased the number of activated Nnat neurons in the NTS (p = 0.001) compared to the vehicle group, while in the DMV no significant increase of c-Fos activation was detected. In conclusion, i.p. injected CCK-8S or BN induce an increased neuronal activity in NTS Nnat neurons, giving rise that Nnat may play a role in the regulation of food intake mediated by peripheral CCK-8S or BN.


Subject(s)
Bombesin/pharmacology , Cholecystokinin/pharmacology , Neurons/drug effects , Peptide Fragments/pharmacology , Solitary Nucleus/cytology , Solitary Nucleus/drug effects , Animals , Male , Membrane Proteins/metabolism , Nerve Tissue Proteins/metabolism , Neurons/metabolism , Rats , Rats, Sprague-Dawley , Solitary Nucleus/metabolism
5.
J Vis Exp ; (159)2020 05 08.
Article in English | MEDLINE | ID: mdl-32449711

ABSTRACT

The prevalence and incidence of depressive disorders are rising worldwide, affecting about 322 million individuals, underlining the need for behavioral studies in animal models. In this protocol, to study depression-like and anhedonic behavior in rats, the established sucrose preference and novelty-induced hypophagia tests are combined with an automated food and liquid intake monitoring system. Prior to testing, in the sucrose preference paradigm, male rats are trained for at least 2 days to consume a sucrose solution in addition to tap water. During the test, rats are again exposed to water and sucrose solution. Consumption is registered every second by the automated system. The ratio of sucrose to total water intake (sucrose preference ratio) is a surrogate parameter for anhedonia. In the novelty-induced hypophagia test, male rats undergo a training period in which they are exposed to a palatable snack. During training, rodents show a stable baseline snack intake. On test day, the animals are transferred from home cages into a fresh, empty cage representing a novel unknown environment with access to the known palatable snack. The automated system records the total intake and its underlying microstructure (e.g., latency to approaching the snack), providing insight into anhedonic and anxious behaviors. The combination of these paradigms with an automated measuring system provides more detailed information, along with higher accuracy by reducing measuring errors. However, the tests use surrogate parameters and only depict depression and anhedonia in an indirect manner.


Subject(s)
Eating/physiology , Food Preferences/physiology , Sucrose/chemistry , Animals , Disease Models, Animal , Male , Rats , Rats, Sprague-Dawley
6.
Nutrients ; 10(12)2018 Dec 03.
Article in English | MEDLINE | ID: mdl-30513901

ABSTRACT

Nesfatin-1 is a well-established anorexigenic peptide. Recent studies indicated an association between nesfatin-1 and anxiety/depression-like behavior. However, it is unclear whether this effect is retained in obesity. The aim was to investigate the effect of nesfatin-130-59-the active core of nesfatin-1-on anxiety and depression-like behavior in normal weight (NW) and diet-induced (DIO) obese rats. Male rats were intracerebroventricularly (ICV) cannulated and received nesfatin-130-59 (0.1, 0.3, or 0.9 nmol/rat) or vehicle 30 min before testing. Nesfatin-130-59 at a dose of 0.3 nmol reduced sucrose consumption in the sucrose preference test in NW rats compared to vehicle (⁻33%, p < 0.05), indicating depression-like/anhedonic behavior. This dose was used for all following experiments. Nesfatin-130-59 also reduced cookie intake during the novelty-induced hypophagia test (-62%, p < 0.05). Moreover, nesfatin-130-59 reduced the number of entries into the center zone in the open field test (-45%, p < 0.01) and the visits of open arms in the elevated zero maze test (-39%, p < 0.01) in NW rats indicating anxiety. Interestingly, DIO rats showed no behavioral alterations after the injection of nesfatin-130-59 (p > 0.05). These results indicate an implication of nesfatin-130-59 in the mediation of anxiety and depression-like behavior/anhedonia under normal weight conditions, while in DIO rats, a desensitization might occur.


Subject(s)
Anhedonia/drug effects , Anxiety/chemically induced , Calcium-Binding Proteins/adverse effects , Calcium-Binding Proteins/chemistry , DNA-Binding Proteins/adverse effects , DNA-Binding Proteins/chemistry , Depression/chemically induced , Nerve Tissue Proteins/adverse effects , Nerve Tissue Proteins/chemistry , Peptide Fragments/adverse effects , Peptide Fragments/chemistry , Animals , Calcium-Binding Proteins/administration & dosage , DNA-Binding Proteins/administration & dosage , Dose-Response Relationship, Drug , Feeding Behavior , Injections, Intraventricular , Male , Nerve Tissue Proteins/administration & dosage , Nucleobindins , Obesity , Peptide Fragments/administration & dosage , Rats , Rats, Sprague-Dawley
7.
Neurosci Lett ; 674: 142-147, 2018 05 01.
Article in English | MEDLINE | ID: mdl-29574216

ABSTRACT

Activity-based anorexia (ABA) is a well-established animal model mimicking the eating disorder anorexia nervosa (AN). Since the pathophysiology of AN is yet poorly understood and specific drug treatments are lacking so far, animal models might be useful to further understand this disease. ABA consists of time-restricted access to food for 1.5 h/day and the possibility to exercise in a running wheel for 24 h/day. This combination leads to robust body weight loss as observed in AN. Here, we investigated the activation of brain corticotropin-releasing factor (CRF) neurons, a transmitter involved in the response to stress, emotional processes and also food intake. After development of ABA, rat brains were processed for c-Fos and CRF double immunohistochemistry. ABA increased the number of c-Fos/CRF double labeled neurons in the paraventricular nucleus (PVN) and the dorsomedial hypothalamic nucleus (DMH) compared to the ad libitum (AL, ad libitum fed, no running wheel) and activity (AC, ad libitum fed, running wheel, p < 0.05) but not to the restricted feeding (RF, food for 1.5 h/day, no running wheel, p > 0.05) group. Also the number of CRF neurons was increased in the DMH of ABA rats compared to AL and AC (p < 0.05). In the Edinger-Westphal nucleus (EW) the number of c-Fos positive neurons was increased in ABA and RF compared to AC (p < 0.05), while the number of double labeled neurons was not different (p > 0.05). Taken together, brain CRF activated under conditions of ABA might play a role in the development and maintenance of this animal model and possibly also in human AN.


Subject(s)
Anorexia Nervosa/metabolism , Brain/metabolism , C-Reactive Protein/metabolism , Neurons/metabolism , Animals , Disease Models, Animal , Dorsomedial Hypothalamic Nucleus/metabolism , Edinger-Westphal Nucleus/metabolism , Female , Motor Activity , Paraventricular Hypothalamic Nucleus/metabolism , Proto-Oncogene Proteins c-fos/metabolism , Rats, Sprague-Dawley
8.
Brain Res ; 1677: 33-46, 2017 Dec 15.
Article in English | MEDLINE | ID: mdl-28951234

ABSTRACT

Activity-based anorexia (ABA) is an established animal model for the eating disorder anorexia nervosa (AN). The pathophysiology of AN and the involvement of food intake-regulatory peptides is still poorly understood. Nesfatin-1, an anorexigenic peptide also involved in the mediation of stress, anxiety and depression might be a likely candidate involved in the pathogenesis of AN. Therefore, activation of nesfatin-1 immunoreactive (ir) brain nuclei was investigated under conditions of ABA. Female Sprague-Dawley rats were used and divided into four groups (n=6/group): activity-based anorexia (ABA), restricted feeding (RF), activity (AC) and ad libitum fed (AL). After the 21-day experimental period and development of ABA, brains were processed for c-Fos/nesfatin-1 double labeling immunohistochemistry. ABA increased the number of nesfatin-1 immunopositive neurons in the paraventricular nucleus, arcuate nucleus, dorsomedial hypothalamic nucleus, locus coeruleus and in the rostral part of the nucleus of the solitary tract compared to AL and AC groups (p<0.05) but not to RF rats (p>0.05). Moreover, we observed significantly more c-Fos and nesfatin-1 ir double-labeled cells in ABA rats compared to RF, AL and AC in the supraoptic nucleus (p<0.05) and compared to AL and AC in the paraventricular nucleus, arcuate nucleus, dorsomedial hypothalamic nucleus, dorsal raphe nucleus and the rostral raphe pallidus (p<0.05). Since nesfatin-1 plays a role in the inhibition of food intake and the response to stress, we hypothesize that the observed changes of brain nesfatin-1 might play a role in the pathophysiology and symptomatology under conditions of ABA and potentially also in patients with AN.


Subject(s)
Anorexia/metabolism , Brain/metabolism , Calcium-Binding Proteins/metabolism , DNA-Binding Proteins/metabolism , Motor Activity/physiology , Nerve Tissue Proteins/metabolism , Neurons/metabolism , Animals , Brain/pathology , Disease Models, Animal , Feeding Behavior , Gene Expression , Immunohistochemistry , Neurons/pathology , Nucleobindins , Proto-Oncogene Proteins c-fos/metabolism , Random Allocation , Rats, Sprague-Dawley
9.
Peptides ; 96: 53-60, 2017 Oct.
Article in English | MEDLINE | ID: mdl-28844870

ABSTRACT

Phoenixin, a recently discovered 20-amino acid peptide was implicated in reproduction. However, the expression in food intake-regulatory nuclei such as the paraventricular nucleus, the arcuate nucleus and the nucleus of the solitary tract suggests an implication of phoenixin in food intake regulation. Therefore, we investigated the effects of phoenixin-14, the shorter form of phoenixin, on food intake following intracerebroventricular (icv) and intraperitoneal (ip) injection in ad libitum fed male Sprague-Dawley rats. Phoenixin-14 injected icv (0.2, 1.7 or 15nmol/rat) during the light phase induced a dose-dependent increase of light phase food intake reaching significance at a minimum dose of 1.7 nmol/rat (+72%, p<0.05 vs. vehicle) used for all further analyses. Assessment of the food intake microstructure showed an icv phoenixin-14-induced increase in meal size (+51%), meal duration (+157%), time spent in meals (+182%) and eating rate (+123%), while inter-meal intervals (-42%) and the satiety ratio (-64%) were decreased compared to vehicle (p<0.05). When injected icv during the dark phase, no modulation of food intake was observed (p>0.05). The light phase icv phoenixin-14-induced increase of water intake did not reach statistical significance compared to vehicle (+136%, p>0.05). The increase of food intake following icv phoenixin-14 was not associated with a significant alteration of grooming behavior (0.4-fold, p=0.377) or locomotion (6-fold, p=0.066) compared to vehicle. When injected ip at higher doses (0.6, 5nmol/kg or 45nmol/kg body weight) during the light phase, phoenixin-14 did not affect food intake (p>0.05). In summary, phoenixin-14 exerts a centrally-mediated orexigenic effect.


Subject(s)
Eating/drug effects , Feeding Behavior/drug effects , Peptides/administration & dosage , Peptides/pharmacology , Animals , Central Nervous System Stimulants , Injections, Intraperitoneal , Injections, Intraventricular , Male , Rats , Rats, Sprague-Dawley
10.
Cell Tissue Res ; 369(2): 331-340, 2017 08.
Article in English | MEDLINE | ID: mdl-28343320

ABSTRACT

Mast cells (MCs) and airway nerves play an important role in allergic asthma. However, little is known about the MCs and their interaction with airway nerves during allergic airway inflammation. This study aims to investigate the distribution and proliferation of MC populations in different lung compartments, along with the association of mast cells with nerve endings, using a house dust mite (HDM) model for allergic airway inflammation. BALB/c mice were exposed to HDM extract intranasally (25 µg/50 µl) for 5 consecutive days a week over 7 weeks. Immunofluorescence and Edu stains were used to examine the colocalisation of MCs and nerves and the proliferation of MCs, respectively. HDM treatment caused an increased migration of MCs into bronchi, alveolar parenchyma and airway vessels. The proportions of tryptase-chymase expressing MC (MCTC) increased significantly in the bronchi and the alveolar parenchyma but not in the vascular tissues, by allergic airway inflammation. The association of MCs with nerves was found only in the bronchi and there were no changes in comparison of controls to HDM-treated animals. The present study shows a strong migration of tryptase expressing MC (MCT) and MCTC into the bronchi and the alveolar parenchyma, as well as of MCT in the vascular compartment under HDM treatment. This supports the hypothesis that these mast cell populations may contribute to allergic airway inflammation.


Subject(s)
Cell Movement , Hypersensitivity/pathology , Inflammation/pathology , Lung/pathology , Animals , Cell Proliferation , Female , Hypersensitivity/parasitology , Lung/innervation , Lung/parasitology , Mice, Inbred BALB C , Nerve Tissue/pathology , Pyroglyphidae/physiology
11.
Front Neurosci ; 10: 475, 2016.
Article in English | MEDLINE | ID: mdl-27826222

ABSTRACT

Anorexia nervosa (AN) is accompanied by severe somatic and psychosocial complications. However, the underlying pathogenesis is poorly understood, treatment is challenging and often hampered by high relapse. Therefore, more basic research is needed to better understand the disease. Since hyperactivity often plays a role in AN, we characterized an animal model to mimic AN using restricted feeding and hyperactivity. Female Sprague-Dawley rats were divided into four groups: no activity/ad libitum feeding (ad libitum, AL, n = 9), activity/ad libitum feeding (activity, AC, n = 9), no activity/restricted feeding (RF, n = 12) and activity/restricted feeding (activity-based anorexia, ABA, n = 11). During the first week all rats were fed ad libitum, ABA and AC had access to a running wheel for 24 h/day. From week two ABA and RF only had access to food from 9:00 to 10:30 a.m. Body weight was assessed daily, activity and food intake monitored electronically, brain activation assessed using Fos immunohistochemistry at the end of the experiment. While during the first week no body weight differences were observed (p > 0.05), after food restriction RF rats showed a body weight decrease: -13% vs. day eight (p < 0.001) and vs. AC (-22%, p < 0.001) and AL (-26%, p < 0.001) that gained body weight (+10% and +13%, respectively; p < 0.001). ABA showed an additional body weight loss (-9%) compared to RF (p < 0.001) reaching a body weight loss of -22% during the 2-week restricted feeding period (p < 0.001). Food intake was greatly reduced in RF (-38%) and ABA (-41%) compared to AL (p < 0.001). Interestingly, no difference in 1.5-h food intake microstructure was observed between RF and ABA (p > 0.05). Similarly, the daily physical activity was not different between AC and ABA (p > 0.05). The investigation of Fos expression in the brain showed neuronal activation in several brain nuclei such as the supraoptic nucleus, arcuate nucleus, locus coeruleus and nucleus of the solitary tract of ABA compared to AL rats. In conclusion, ABA combining physical activity and restricted feeding likely represents a suited animal model for AN to study pathophysiological alterations and pharmacological treatment options. Nonetheless, cautious interpretation of the data is necessary since rats do not voluntarily reduce their body weight as observed in human AN.

12.
Brain Res ; 1648(Pt A): 46-53, 2016 10 01.
Article in English | MEDLINE | ID: mdl-27396908

ABSTRACT

As anorexigenic hormones bombesin and nucleobindin2 (NUCB2)/nesfatin-1 decrease food intake in rodents. Both hormones have been described in brain nuclei that play a role in the modulation of hunger and satiety, like the paraventricular nucleus of the hypothalamus (PVN) and the nucleus of the solitary tract (NTS). However, the direct interaction of the two hormones is unknown so far. The aim of study was to elucidate whether bombesin directly interacts with NUCB2/nesfatin-1 neurons in the PVN and NTS. Therefore, we injected bombesin intraperitoneally (ip) at two doses (26 and 32nmol/kg body weight) and assessed c-Fos activation in the PVN, arcuate nucleus (ARC) and NTS compared to vehicle treated rats (0.15M NaCl). We also performed co-localization studies with oxytocin or tyrosine hydroxylase. Bombesin at both doses increased the number of c-Fos positive neurons in the PVN (p<0.05) and NTS (p<0.05) compared to vehicle, while in the ARC no modulation was observed (p>0.05). In the PVN and NTS the number of c-Fos positive neurons colocalized with NUCB2/nesfatin-1 increased after bombesin injection compared to vehicle treatment (p<0.05). Moreover, an increase of activated NUCB2/nesfatin-1 immunoreactive neurons that co-expressed oxytocin in the PVN (p<0.05) or tyrosine hydroxylase in the NTS (p<0.05) was observed compared to vehicle. Our results show that peripherally injected bombesin activates NUCB2/nesfatin-1 neurons in the PVN and NTS giving rise to a possible interaction between bombesin and NUCB2/nesfatin-1 in the modulation of food intake.


Subject(s)
Bombesin/metabolism , Calcium-Binding Proteins/metabolism , DNA-Binding Proteins/metabolism , Eating/physiology , Nerve Tissue Proteins/metabolism , Animals , Arcuate Nucleus of Hypothalamus/metabolism , Bombesin/physiology , Calcium-Binding Proteins/physiology , DNA-Binding Proteins/physiology , Hypothalamus/metabolism , Male , Nerve Tissue Proteins/physiology , Neurons/metabolism , Nucleobindins , Oxytocin , Paraventricular Hypothalamic Nucleus/metabolism , Proto-Oncogene Proteins c-fos/metabolism , Rats , Rats, Sprague-Dawley , Solitary Nucleus/metabolism , Tyrosine 3-Monooxygenase
13.
Front Neurosci ; 9: 422, 2015.
Article in English | MEDLINE | ID: mdl-26635512

ABSTRACT

Nesfatin-1 is well-established to induce an anorexigenic effect. Recently, nesfatin-130-59, was identified as active core of full length nesfatin-11-82 in mice, while its role in rats remains unclear. Therefore, we investigated the effects of nesfatin-130-59 injected intracerebroventricularly (icv) on the food intake microstructure in rats. To assess whether the effect was also mediated peripherally we injected nesfatin-130-59 intraperitoneally (ip). Since obesity affects the signaling of various food intake-regulatory peptides we investigated the effects of nesfatin-130-59 under conditions of diet-induced obesity (DIO). Male Sprague-Dawley rats fed ad libitum with standard diet were icv cannulated and injected with vehicle (5 µl ddH2O) or nesfatin-130-59 at 0.37, 1.1, and 3.3 µg (0.1, 0.3, 0.9 nmol/rat) and the food intake microstructure assessed using a food intake monitoring system. Next, naïve rats were injected ip with vehicle (300 µl saline) or nesfatin-130-59 (8.1, 24.3, 72.9 nmol/kg). Lastly, rats were fed a high fat diet for 10 weeks and those developing DIO were icv cannulated. Nesfatin-1 (0.9 nmol/rat) or vehicle (5 µl ddH2O) was injected icv and the food intake microstructure assessed. In rats fed standard diet, nesfatin-130-59 caused a dose-dependent reduction of dark phase food intake reaching significance at 0.9 nmol/rat in the period of 4-8 h post injection (-29%) with the strongest reduction during the fifth hour (-75%), an effect detectable for 24 h (-12%, p < 0.05 vs. vehicle). The anorexigenic effect of nesfatin-130-59 was due to a reduction in meal size (-44%, p < 0.05), while meal frequency was not altered compared to vehicle. In contrast to icv injection, nesfatin-130-59 injected ip in up to 30-fold higher doses did not alter food intake. In DIO rats fed high fat diet, nesfatin-130-59 injected icv reduced food intake in the third hour post injection (-71%), an effect due to a reduced meal frequency (-27%, p < 0.05), while meal size was not altered. Taken together, nesfatin-130-59 is the active core of nesfatin-11-82 and acts centrally to reduce food intake in rats. The anorexigenic effect depends on the metabolic condition with increased satiation (reduction in meal size) under normal weight conditions, while in DIO rats satiety (reduction in meal frequency) is induced.

14.
Neuropeptides ; 53: 19-27, 2015 Oct.
Article in English | MEDLINE | ID: mdl-26329764

ABSTRACT

It has been shown that dopamine antagonists suppress the ghrelin-induced increased motivation to work for food. The aim of this study was to investigate the influence of the dopamine antagonist flupentixol on ghrelin-induced food intake. Ad libitum fed male Sprague-Dawley (SD) rats were injected intraperitoneally (ip) with vehicle plus vehicle, vehicle plus ghrelin (13 µg/kg), 0.25mg/kg or 0.5mg/kg flupentixol plus ghrelin, or 0.25mg/kg or 0.5 mg/kg flupentixol plus vehicle. In a second experiment, intracerebroventricularly (icv) cannulated rats received an ip injection of vehicle (0.15M NaCl) or flupentixol (0.25mg/kg) and 20 min later an icv injection of vehicle or ghrelin (1 µg/rat). Both experiments were performed twice: first, rats were offered only standard chow, while in the second experiment they could choose between standard chow and a palatable/preferred chow. Cumulative light phase food intake was assessed for 7h. Ip as well as icv injected ghrelin reliably increased intake of standard chow. Flupentixol did not affect ghrelin-induced intake of standard chow. Ip injected ghrelin failed to increase the intake of palatable chow, whereas icv injected ghrelin did. This effect was not blocked by ip flupentixol. In summary, ip administered ghrelin did not increase the intake of chow the rats preferred; whereas icv injected ghrelin further stimulated the intake of preferred chow suggesting a direct central mediation of this effect. Our results show that the dopamine antagonist flupentixol does not influence ghrelin-induced feeding in our choice paradigm.


Subject(s)
Dopamine Antagonists/pharmacology , Eating/drug effects , Flupenthixol/pharmacology , Ghrelin/antagonists & inhibitors , Animals , Dopamine Antagonists/administration & dosage , Dose-Response Relationship, Drug , Flupenthixol/administration & dosage , Food Preferences , Injections, Intraperitoneal , Injections, Intraventricular , Male , Periodicity , Rats , Rats, Sprague-Dawley
15.
Peptides ; 61: 75-82, 2014 Nov.
Article in English | MEDLINE | ID: mdl-25219943

ABSTRACT

Dipeptidyl peptidase IV (DPPIV) is a protease with broad distribution involved in various homeostatic processes such as immune defense, psychoneuroendocrine functions and nutrition. While DPPIV protein levels were investigated in patients with hyporectic disorders, less is known under conditions of obesity. Therefore, we investigated DPPIV across a broad range of body mass index (BMI). Blood samples from hospitalized patients with normal weight (BMI 18.5-25 kg/m(2)), anorexia nervosa (BMI <17.5 kg/m(2)) and obesity (BMI 30-40, 40-50 and >50 kg/m(2), n = 15/group) were tested cross-sectionally and DPPIV concentration and total enzyme activity and the DPPIV targets, pancreatic polypeptide (PP) and glucagon-like peptide (GLP-1) were measured. DPPIV protein expression was detected in human plasma indicated by a strong band at the expected size of 110 kDa and another major band at 50 kDa, likely representing a fragment comprised of two heavy chains. Obese patients had higher DPPIV protein levels compared to normal weight and anorexics (+50%, p<0.05) resulting in a positive correlation with BMI (r = 0.34, p = 0.004). DPPIV serum activity was similar in all groups (p>0.05), while the concentration/activity ratio was higher in obese patients (p<0.05). Plasma PP levels were highest in anorexic patients (∼ 2-fold increase compared to other groups, p<0.05), whereas GLP-1 did not differ among groups (p<0.05). Taken together, circulating DPPIV protein levels depend on body weight with increased levels in obese resulting in an increased concentration/activity ratio. Since DPPIV deactivates food intake-inhibitory hormones like PP, an increased DPPIV concentration/activity ratio might contribute to reduced food intake-inhibitory signaling under conditions of obesity.


Subject(s)
Body Mass Index , Dipeptidyl Peptidase 4/blood , Gene Expression Regulation, Enzymologic , Obesity/blood , Signal Transduction , Anorexia Nervosa/blood , Female , Glucagon-Like Peptide 1/blood , Humans , Male , Pancreatic Polypeptide/blood
16.
Peptides ; 59: 25-33, 2014 Sep.
Article in English | MEDLINE | ID: mdl-25017242

ABSTRACT

Serotonin and cholecystokinin (CCK) play a role in the short-term inhibition of food intake. It is known that peripheral injection of CCK increases c-Fos-immunoreactivity (Fos-IR) in the nucleus of the solitary tract (NTS) in rats, and injection of the serotonin antagonist ondansetron decreases the number of c-Fos-IR cells in the NTS. This supports the idea of serotonin contributing to the effects of CCK. The aim of the present study was to elucidate whether peripherally injected CCK-8S modulates the concentration of serotonin in brain feeding-regulatory nuclei. Ad libitum fed male Sprague-Dawley rats received 5.2 and 8.7 nmol/kg CCK-8S (n=3/group) or 0.15M NaCl (n=3-5/group) injected intraperitoneally (ip). The number of c-Fos-IR neurons, and the fluorescence intensity of serotonin in nerve fibers were assessed in the paraventricular nucleus (PVN), arcuate nucleus (ARC), NTS and dorsal motor nucleus of the vagus (DMV). CCK-8S increased the number of c-Fos-ir neurons in the NTS (mean±SEM: 72±4, and 112±5 neurons/section, respectively) compared to vehicle-treated rats (7±2 neurons/section, P<0.05), but did not modulate c-Fos expression in the DMV or ARC. Additionally, CCK-8S dose-dependently increased the number of c-Fos-positive neurons in the PVN (218±15 and 128±14, respectively vs. 19±5, P<0.05). In the NTS and DMV we observed a decrease of serotonin-immunoreactivity 90 min after injection of CCK-8S (46±2 and 49±8 pixel/section, respectively) compared to vehicle (81±8 pixel/section, P<0.05). No changes of serotonin-immunoreactivity were observed in the PVN and ARC. Our results suggest that serotonin is involved in the mediation of CCK-8's effects in the brainstem.


Subject(s)
Brain Stem/drug effects , Brain Stem/metabolism , Cholecystokinin/administration & dosage , Cholecystokinin/pharmacology , Nerve Fibers/drug effects , Nerve Fibers/metabolism , Peptide Fragments/administration & dosage , Peptide Fragments/pharmacology , Serotonin/metabolism , Animals , Injections, Intraperitoneal , Male , Rats , Rats, Sprague-Dawley
17.
J Neurogastroenterol Motil ; 20(2): 228-35, 2014 Apr 30.
Article in English | MEDLINE | ID: mdl-24840375

ABSTRACT

BACKGROUND/AIMS: Carbohydrate malabsorption is frequent in patients with functional gastrointestinal disorders and in healthy volunteers and can cause gastrointestinal symptoms mimicking irritable bowel syndrome (IBS). The aim of this study was to investigate the prevalence of symptomatic lactose and fructose malabsorption in a large population of patients with IBS-like symptoms based on Rome II criteria. METHODS: Patients with unclear abdominal discomfort (n = 2,390) underwent lactose (50 g) and fructose (50 g) hydrogen (H2) breath tests and depending on the results further testing with 25 g fructose or 50 g glucose, or upper endoscopy with duodenal biopsies. Additionally, this population was investigated regarding the prevalence of small intestinal bacterial overgrowth (SIBO) based on glucose breath test and celiac disease. RESULTS: Of the 2,390 patients with IBS-like symptoms, 848 (35%) were symptomatic lactose malabsorbers and 1,531 (64%) sympto-matic fructose malabsorbers. A combined symptomatic carbohydrate malabsorption was found in 587 (25%) patients. Severe fructose malabsorbers (pathologic 25 g fructose test) exhaled significantly higher H2 concentrations in the 50 g test than pa-tients with negative 25 g fructose test (P < 0.001). Out of 460/659 patients with early significant H2 increase in the lactose and fructose test who underwent a glucose breath test, 88 patients had positive results indicative of SIBO and they were sig-nificantly older than patients with negative test result (P < 0.01). Celiac disease was found in 1/161 patients by upper endoscopy. CONCLUSIONS: Carbohydrate malabsorption is a frequent but underestimated condition in patients with IBS-like symptoms although diagnosis can be easily confirmed by H2 breath testing.

18.
Front Endocrinol (Lausanne) ; 4: 202, 2014 Jan 06.
Article in English | MEDLINE | ID: mdl-24432013

ABSTRACT

Irisin was recently identified as muscle-derived hormone that increases energy expenditure. Studies in normal weight and obese subjects reported an increased irisin expression following physical activity, although inconsistent results were observed. Increased physical activity in a subgroup of patients with anorexia nervosa (AN) complicates the course of the disease. Since irisin could account for differences in clinical outcomes, we investigated irisin levels in anorexic patients with high and moderate physical activity to evaluate whether irisin differs with increasing physical activity. Hospitalized female anorexic patients (n = 39) were included. Plasma irisin measured by enzyme-linked immunosorbent assay and locomotor activity were assessed at the same time. Patients were separated into two groups (n = 19/group; median excluded): moderate and high activity (6331 ± 423 vs. 13743 ± 1047 steps/day, p < 0.001). The groups did not differ in body mass index (14.2 ± 0.4 vs. 15.0 ± 0.4 kg/m(2)), irisin levels (558.2 ± 26.1 vs. 524.9 ± 25.2 ng/ml), and body weight-adjusted resting energy expenditure (17.6 ± 0.3 vs. 18.0 ± 0.3 kcal/kg/day, p > 0.05), whereas body weight-adjusted total energy expenditure (46.0 ± 1.4 vs. 41.1 ± 1.1 kcal/kg/day), metabolic equivalents (METs, 1.9 ± 0.1 vs. 1.7 ± 0.1 METs/day), body weight-adjusted exercise activity thermogenesis (1.8 ± 0.5 vs. 0.6 ± 0.3 kcal/kg/day), duration of exercise (18.6 ± 4.7 vs. 6.2 ± 3.1 min/day), and body weight-adjusted non-exercise activity thermogenesis (21.6 ± 1.0 vs. 18.8 ± 0.8 kcal/kg/day) were higher in the high activity compared to the moderate activity group (p < 0.05). No correlations were observed between irisin and activity parameters in the whole sample (p > 0.05). In conclusion, the current data do not support the concept of irisin being induced by exercise, at least not under conditions of severely reduced body weight like AN.

19.
Peptides ; 43: 13-9, 2013 May.
Article in English | MEDLINE | ID: mdl-23454172

ABSTRACT

Ghrelin is the only known peripherally produced and centrally acting peptide hormone stimulating food intake. The acylation of ghrelin is essential for binding to its receptor. Recently, the ghrelin activating enzyme ghrelin-O-acyltransferase (GOAT) was identified in mice, rats and humans. In addition to gastric mucosal expression, GOAT was also detected in the circulation of rodents and its expression was dependent on metabolic status. We investigated whether GOAT is also present in human plasma and whether expression levels are affected under different conditions of body weight. Normal weight, anorexic and obese subjects with body mass index (BMI) 30-40, 40-50 and >50 were recruited (n=9/group). In overnight fasted subjects GOAT protein expression was assessed by Western blot and ghrelin measured by ELISA. GOAT protein was detectable in human plasma. Anorexic patients showed reduced GOAT protein levels (-42%, p<0.01) whereas obese patients with BMI>50 had increased concentrations (+34%) compared to normal weight controls. Ghrelin levels were higher in anorexic patients compared to all other groups (+62-78%, p<0.001). Plasma GOAT protein expression showed a positive correlation with BMI (r=0.71, p<0.001) and a negative correlation with ghrelin (r=-0.60, p<0.001). Summarized, GOAT is also present in human plasma and GOAT protein levels depend on the metabolic environment with decreased levels in anorexic and increased levels in morbidly obese patients. These data may indicate that GOAT counteracts the adaptive changes of ghrelin observed under these conditions and ultimately contributes to the development or maintenance of anorexia and obesity as it is the only enzyme acylating ghrelin.


Subject(s)
Acyltransferases/blood , Body Mass Index , Ghrelin/metabolism , Acyltransferases/metabolism , Female , Humans , Male
20.
Histochem Cell Biol ; 139(6): 909-18, 2013 Jun.
Article in English | MEDLINE | ID: mdl-23515787

ABSTRACT

The orexigenic peptide ghrelin and the anorexigenic peptide nesfatin-1 are expressed by the same endocrine cell of the rat stomach, the X/A-like cell. However, data in humans are lacking, especially under conditions of obesity. We collected gastric tissue of obese patients undergoing sleeve gastrectomy and investigated the expression of nesfatin-1 and ghrelin in the gastric oxyntic mucosa by immunofluorescence. Nesfatin-1 immunoreactivity was detected in the human oxyntic mucosa in cells with an endocrine phenotype. A major portion of nesfatin-1 immunoreactive cells (78 %) co-localized with ghrelin indicating the occurrence in human X/A-like cells. In patients with very high body mass index (BMI 55-65 kg/m(2)), the number of nesfatin-1 immunoreactive cells/low-power field was significantly higher than in obese patients with lower BMI (40-50 kg/m(2), 118 ± 10 vs. 82 ± 11, p < 0.05). On the other hand, the number of ghrelin immunoreactive cells was significantly reduced in obese patients with higher compared to lower BMI (96 ± 12 vs. 204 ± 21, p < 0.01). Also the ghrelin-acylating enzyme ghrelin-O-acyltransferase decreased with increasing BMI. In conclusion, nesfatin-1 immunoreactivity is also co-localized with ghrelin in human gastric X/A-like cells giving rise to a dual role of this cell type with differential effects on stimulation and inhibition of appetite dependent on the peptide released. The expression of these two peptides is differentially regulated under obese conditions with an increase of nesfatin-1 and a decrease of ghrelin immunoreactivity with rising BMI pointing towards an adaptive change of expression that may counteract further body weight increase.


Subject(s)
Calcium-Binding Proteins/metabolism , DNA-Binding Proteins/metabolism , Gastric Mucosa/metabolism , Ghrelin/metabolism , Nerve Tissue Proteins/metabolism , Obesity, Morbid/metabolism , Acyltransferases/metabolism , Adaptation, Physiological , Adult , Aged , Blotting, Western , Body Mass Index , Female , Gastric Mucosa/pathology , Humans , Male , Middle Aged , Nucleobindins , Obesity, Morbid/pathology , Obesity, Morbid/surgery
SELECTION OF CITATIONS
SEARCH DETAIL
...