Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 15 de 15
Filter
Add more filters










Publication year range
1.
mBio ; 15(6): e0076824, 2024 Jun 12.
Article in English | MEDLINE | ID: mdl-38771062

ABSTRACT

The rapid evolution of SARS-CoV-2 variants highlights the need for new therapies to prevent disease spread. SARS-CoV-2, like SARS-CoV-1, uses the human cell surface protein angiotensin-converting enzyme 2 (ACE2) as its native receptor. Here, we design and characterize a mutant ACE2 that enables rapid affinity purification of a dimeric protein by altering the active site to prevent autoproteolytic digestion of a C-terminal His10 epitope tag. In cultured cells, mutant ACE2 competitively inhibits lentiviral vectors pseudotyped with spikes from multiple SARS-CoV-2 variants and infectious SARS-CoV-2. Moreover, the protein can be nebulized and retains virus-binding properties. We developed a system for the delivery of aerosolized ACE2 to K18-hACE2 mice and demonstrated protection by our modified ACE2 when delivered as a prophylactic agent. These results show proof-of-concept for an aerosolized delivery method to evaluate anti-SARS-CoV-2 agents in vivo and suggest a new tool in the ongoing fight against SARS-CoV-2 and other ACE2-dependent viruses. IMPORTANCE: The rapid evolution of SARS-CoV-2 variants poses a challenge for immune recognition and antibody therapies. However, the virus is constrained by the requirement that it recognizes a human host receptor protein. A recombinant ACE2 could protect against SARS-CoV-2 infection by functioning as a soluble decoy receptor. We designed a mutant version of ACE2 with impaired catalytic activity to enable the purification of the protein using a single affinity purification step. This protein can be nebulized and retains the ability to bind the relevant domains from SARS-CoV-1 and SARS-CoV-2. Moreover, this protein inhibits viral infection against a panel of coronaviruses in cells. Finally, we developed an aerosolized delivery system for animal studies and show the modified ACE2 offers protection in an animal model of COVID-19. These results show proof-of-concept for an aerosolized delivery method to evaluate anti-SARS-CoV-2 agents in vivo and suggest a new tool in the ongoing fight against SARS-CoV-2.


Subject(s)
Angiotensin-Converting Enzyme 2 , COVID-19 , SARS-CoV-2 , Angiotensin-Converting Enzyme 2/metabolism , Angiotensin-Converting Enzyme 2/genetics , Animals , SARS-CoV-2/genetics , SARS-CoV-2/drug effects , Mice , Humans , COVID-19/virology , Spike Glycoprotein, Coronavirus/genetics , Spike Glycoprotein, Coronavirus/metabolism , Mutation , Aerosols , HEK293 Cells , Female
2.
Mol Cell Biol ; 44(4): 123-137, 2024.
Article in English | MEDLINE | ID: mdl-38747374

ABSTRACT

SREBP transcription factors are central regulators of lipid metabolism. Their proteolytic activation requires ER to the Golgi translocation and subsequent cleavage by site-1-protease (S1P). Produced as a proprotein, S1P undergoes autocatalytic cleavage from its precursor S1PA to mature S1PC form. Here, we report that SPRING (previously C12ORF29) and S1P interact through their ectodomains, and that this facilitates the autocatalytic cleavage of S1PA into its mature S1PC form. Reciprocally, we identified a S1P recognition-motif in SPRING and demonstrate that S1P-mediated cleavage leads to secretion of the SPRING ectodomain in cells, and in liver-specific Spring knockout (LKO) mice transduced with AAV-mSpring. By reconstituting SPRING variants into SPRINGKO cells we show that the SPRING ectodomain supports proteolytic maturation of S1P and SREBP signaling, but that S1P-mediated SPRING cleavage is not essential for these processes. Absence of SPRING modestly diminishes proteolytic maturation of S1PA→C and trafficking of S1PC to the Golgi. However, despite reaching the Golgi in SPRINGKO cells, S1PC fails to rescue SREBP signaling. Remarkably, whereas SREBP signaling was severely attenuated in SPRINGKO cells and LKO mice, that of ATF6, another S1P substrate, was unaffected in these models. Collectively, our study positions SPRING as a dedicated licensing factor for SREBP-specific activation by S1P.


Subject(s)
Golgi Apparatus , Mice, Knockout , Proprotein Convertases , Animals , Mice , Golgi Apparatus/metabolism , Humans , Proprotein Convertases/metabolism , Proprotein Convertases/genetics , Serine Endopeptidases/metabolism , Serine Endopeptidases/genetics , Signal Transduction , HEK293 Cells , Liver/metabolism , Proteolysis , Endoplasmic Reticulum/metabolism , Sterol Regulatory Element Binding Proteins/metabolism , Sterol Regulatory Element Binding Proteins/genetics
3.
bioRxiv ; 2023 Oct 05.
Article in English | MEDLINE | ID: mdl-37808801

ABSTRACT

The rapid evolution of SARS-CoV-2 variants highlights the need for new therapies to prevent disease spread. SARS-CoV-2, like SARS-CoV-1, uses the human cell surface protein angiotensin-converting enzyme 2 (ACE2) as its native receptor. Here, we design and characterize a mutant ACE2 that enables rapid affinity purification of a dimeric protein by altering the active site to prevent autoproteolytic digestion of a C-terminal His10 epitope tag. In cultured cells, mutant ACE2 competitively inhibits lentiviral vectors pseudotyped with spike from multiple SARS-CoV-2 variants, and infectious SARS-CoV-2. Moreover, the protein can be nebulized and retains virus-binding properties. We developed a system for delivery of aerosolized ACE2 to K18-hACE2 mice and demonstrate protection by our modified ACE2 when delivered as a prophylactic agent. These results show proof-of-concept for an aerosolized delivery method to evaluate anti-SARS-CoV-2 agents in vivo and suggest a new tool in the ongoing fight against SARS-CoV-2 and other ACE2-dependent viruses.

4.
Cell ; 184(14): 3689-3701.e22, 2021 07 08.
Article in English | MEDLINE | ID: mdl-34139175

ABSTRACT

The cholesterol-sensing protein Scap induces cholesterol synthesis by transporting membrane-bound transcription factors called sterol regulatory element-binding proteins (SREBPs) from the endoplasmic reticulum (ER) to the Golgi apparatus for proteolytic activation. Transport requires interaction between Scap's two ER luminal loops (L1 and L7), which flank an intramembrane sterol-sensing domain (SSD). Cholesterol inhibits Scap transport by binding to L1, which triggers Scap's binding to Insig, an ER retention protein. Here we used cryoelectron microscopy (cryo-EM) to elucidate two structures of full-length chicken Scap: (1) a wild-type free of Insigs and (2) mutant Scap bound to chicken Insig without cholesterol. Strikingly, L1 and L7 intertwine tightly to form a globular domain that acts as a luminal platform connecting the SSD to the rest of Scap. In the presence of Insig, this platform undergoes a large rotation accompanied by rearrangement of Scap's transmembrane helices. We postulate that this conformational change halts Scap transport of SREBPs and inhibits cholesterol synthesis.


Subject(s)
Cholesterol/metabolism , Membrane Proteins/chemistry , Membrane Proteins/metabolism , Amino Acid Sequence , Animals , Antibodies/metabolism , Chickens , Membrane Proteins/isolation & purification , Membrane Proteins/ultrastructure , Models, Biological , Models, Molecular , Protein Binding , Protein Domains , Protein Structure, Secondary , Structure-Activity Relationship
5.
Alzheimers Dement ; 2020 Oct 08.
Article in English | MEDLINE | ID: mdl-33090700

ABSTRACT

INTRODUCTION: Triggering receptor expressed on myeloid cells-2 (TREM2) is an immune receptor expressed on microglia that also can become soluble (sTREM2). How TREM2 engages different ligands remains poorly understood. METHODS: We used comprehensive biolayer interferometry (BLI) analysis to investigate TREM2 and sTREM2 interactions with apolipoprotein E (apoE) and monomeric amyloid beta (Aß) (mAß42). RESULTS: TREM2 engagement of apoE was protein mediated with little effect of lipidation, showing slight affinity differences between isoforms (E4 > E3 > E2). Another family member, TREML2, did not bind apoE. Disease-linked TREM2 variants within a "basic patch" minimally impact apoE binding. Instead, TREM2 uses a unique hydrophobic surface to bind apoE, which requires the apoE hinge region. TREM2 and sTREM2 directly bind mAß42 and potently inhibit Aß42 polymerization, suggesting a potential role for soluble sTREM2 in preventing AD pathogenesis. DISCUSSION: These findings demonstrate that TREM2 has at least two ligand-binding surfaces that might be therapeutic targets and uncovers a potential function for sTREM2 in directly inhibiting Aß polymerization.

6.
Proc Natl Acad Sci U S A ; 117(45): 28080-28091, 2020 11 10.
Article in English | MEDLINE | ID: mdl-33106423

ABSTRACT

Lipid homeostasis in animal cells is maintained by sterol regulatory element-binding proteins (SREBPs), membrane-bound transcription factors whose proteolytic activation requires the cholesterol-sensing membrane protein Scap. In endoplasmic reticulum (ER) membranes, the carboxyl-terminal domain (CTD) of SREBPs binds to the CTD of Scap. When cholesterol levels are low, Scap escorts SREBPs from the ER to the Golgi, where the actions of two proteases release the amino-terminal domains of SREBPs that travel to the nucleus to up-regulate expression of lipogenic genes. The CTD of SREBP remains bound to Scap but must be eliminated so that Scap can be recycled to bind and transport additional SREBPs. Here, we provide insights into how this occurs by performing a detailed molecular dissection of the CTD of SREBP2, one of three SREBP isoforms expressed in mammals. We identify a degradation signal comprised of seven noncontiguous amino acids encoded in exon 19 that mediates SREBP2's proteasomal degradation in the absence of Scap. When bound to the CTD of Scap, this signal is masked and SREBP2 is stabilized. Binding to Scap requires an arginine residue in exon 18 of SREBP2. After SREBP2 is cleaved in Golgi, its CTD remains bound to Scap and returns to the ER with Scap where it is eliminated by proteasomal degradation. The Scap-binding motif, but not the degradation signal, is conserved in SREBP1. SREBP1's stability is determined by a degradation signal in a different region of its CTD. These findings highlight a previously unknown role for the CTD of SREBPs in regulating SREBP activity.


Subject(s)
Cholesterol/metabolism , Proteasome Endopeptidase Complex/metabolism , Sterol Regulatory Element Binding Protein 2 , Amino Acid Motifs , Animals , Endoplasmic Reticulum/metabolism , Golgi Apparatus/metabolism , Humans , Intracellular Signaling Peptides and Proteins/chemistry , Intracellular Signaling Peptides and Proteins/metabolism , Membrane Proteins/chemistry , Membrane Proteins/metabolism , Protein Binding , Protein Domains , Proteolysis , Sterol Regulatory Element Binding Protein 2/chemistry , Sterol Regulatory Element Binding Protein 2/metabolism
7.
J Biol Chem ; 293(51): 19572-19585, 2018 12 21.
Article in English | MEDLINE | ID: mdl-30355735

ABSTRACT

Clinical isolates of Yersinia, Klebsiella, and Escherichia coli frequently secrete the small molecule metallophore yersiniabactin (Ybt), which passivates and scavenges transition metals during human infections. YbtT is encoded within the Ybt biosynthetic operon and is critical for full Ybt production in bacteria. However, its biosynthetic function has been unclear because it is not essential for Ybt production by the in vitro reconstituted nonribosomal peptide synthetase/polyketide synthase (NRPS/PKS) pathway. Here, we report the structural and biochemical characterization of YbtT. YbtT structures at 1.4-1.9 Å resolution possess a serine hydrolase catalytic triad and an associated substrate chamber with features similar to those previously reported for low-specificity type II thioesterases (TEIIs). We found that YbtT interacts with the two major Ybt biosynthetic proteins, HMWP1 (high-molecular-weight protein 1) and HMWP2 (high-molecular-weight protein 2), and hydrolyzes a variety of aromatic and acyl groups from their phosphopantetheinylated carrier protein domains. In vivo YbtT titration in uropathogenic E. coli revealed a distinct optimum for Ybt production consistent with a tradeoff between clearing both stalled inhibitory intermediates and productive Ybt precursors from HMWP1 and HMWP2. These results are consistent with a model in which YbtT maintains cellular Ybt biosynthesis by removing nonproductive, inhibitory thioesters that form aberrantly at multiple sites on HMWP1 and HMWP2.


Subject(s)
Enterobacteriaceae/enzymology , Fatty Acid Synthases/chemistry , Fatty Acid Synthases/metabolism , Phenols/metabolism , Thiazoles/metabolism , Thiolester Hydrolases/chemistry , Thiolester Hydrolases/metabolism , Biocatalysis , Catalytic Domain , Crystallography, X-Ray , Enterobacteriaceae/metabolism , Fatty Acid Synthases/genetics , Hydrolysis , Kinetics , Models, Molecular , Mutation , Thiolester Hydrolases/genetics
8.
Bioessays ; 40(10): e1800086, 2018 10.
Article in English | MEDLINE | ID: mdl-30113067

ABSTRACT

Recent findings regarding the cellular biology and immunology of BST-2 (also known as tetherin) indicate that its function could be exploited as a universal replication inhibitor of enveloped respiratory viruses (e.g., influenza, respiratory syncytial virus, etc.). BST-2 inhibits viral replication by preventing virus budding from the plasma membrane and by inducing an antiviral state in cells adjacent to infection via unique inflammatory signaling mechanisms. This review presents the first comprehensive summary of what is currently known about BST-2 anti-viral function against respiratory viruses, how these viruses construct countermeasures to antagonize BST-2, and how BST-2 function might be targeted to develop therapies to treat respiratory virus infections. The authors address the current gaps in knowledge, including the need for mechanistic understanding of BST-2 antagonism by respiratory viruses, that should be bridged to achieve that goal.


Subject(s)
Antigens, CD/physiology , Host-Pathogen Interactions/physiology , Respiratory Tract Infections/virology , Antigens, CD/chemistry , GPI-Linked Proteins/antagonists & inhibitors , GPI-Linked Proteins/chemistry , GPI-Linked Proteins/physiology , Humans , Molecular Targeted Therapy/methods , Signal Transduction , Virion , Virus Diseases/immunology , Virus Release , Virus Replication/drug effects
9.
J Mol Biol ; 429(11): 1607-1629, 2017 06 02.
Article in English | MEDLINE | ID: mdl-28432014

ABSTRACT

The protein triggering receptor expressed on myeloid cells-2 (TREM2) is an immunomodulatory receptor with a central role in myeloid cell activation and survival. In recent years, the importance of TREM2 has been highlighted by the identification of coding variants that increase risk for Alzheimer's disease and other neurodegenerative diseases. Animal studies have further shown the importance of TREM2 in neurodegenerative and other inflammatory disease models including chronic obstructive pulmonary disease, multiple sclerosis, and stroke. A mechanistic understanding of TREM2 function remains elusive, however, due in part to the absence of conclusive information regarding the identity of endogenous TREM2 ligands. While many TREM2 ligands have been proposed, their physiological role and mechanism of engagement remain to be determined. In this review, we highlight the suggested roles of TREM2 in these diseases and the recent advances in our understanding of TREM2 and discuss putative TREM2-ligand interactions and their potential roles in signaling during health and disease. We develop a model based on the TREM2 structure to explain how different TREM2 ligands might interact with the receptor and how disease risk variants may alter ligand interactions. Finally, we propose future experimental directions to establish the role and importance of these different interactions on TREM2 function.


Subject(s)
Health , Membrane Glycoproteins/metabolism , Neurodegenerative Diseases/pathology , Receptors, Immunologic/metabolism , Animals , Disease Models, Animal , Humans , Protein Binding
10.
Elife ; 52016 12 20.
Article in English | MEDLINE | ID: mdl-27995897

ABSTRACT

Genetic variations in the myeloid immune receptor TREM2 are linked to several neurodegenerative diseases. To determine how TREM2 variants contribute to these diseases, we performed structural and functional studies of wild-type and variant proteins. Our 3.1 Å TREM2 crystal structure revealed that mutations found in Nasu-Hakola disease are buried whereas Alzheimer's disease risk variants are found on the surface, suggesting that these mutations have distinct effects on TREM2 function. Biophysical and cellular methods indicate that Nasu-Hakola mutations impact protein stability and decrease folded TREM2 surface expression, whereas Alzheimer's risk variants impact binding to a TREM2 ligand. Additionally, the Alzheimer's risk variants appear to epitope map a functional surface on TREM2 that is unique within the larger TREM family. These findings provide a guide to structural and functional differences among genetic variants of TREM2, indicating that therapies targeting the TREM2 pathway should be tailored to these genetic and functional differences with patient-specific medicine approaches for neurodegenerative disorders.


Subject(s)
Membrane Glycoproteins/chemistry , Membrane Glycoproteins/metabolism , Mutant Proteins/chemistry , Mutant Proteins/metabolism , Mutation , Neurodegenerative Diseases/genetics , Receptors, Immunologic/chemistry , Receptors, Immunologic/metabolism , Crystallography, X-Ray , Humans , Membrane Glycoproteins/genetics , Models, Molecular , Mutant Proteins/genetics , Protein Conformation , Receptors, Immunologic/genetics
11.
Biochim Biophys Acta ; 1860(11 Pt A): 2335-2344, 2016 11.
Article in English | MEDLINE | ID: mdl-27369736

ABSTRACT

BACKGROUND: P38 MAP kinases are centrally involved in mediating extracellular signaling in various diseases. While much attention has previously been focused on the ubiquitously expressed family member MAPK14 (p38α), recent studies indicate that family members such as MAPK13 (p38δ) display a more selective cellular and tissue expression and might therefore represent a specific kinase to target in certain diseases. METHODS: To facilitate the design of potent and specific inhibitors, we present here the structural, biophysical, and functional characterization of two new MAPK13-inhibitor complexes, as well as the first comprehensive structural, biophysical, and functional analysis of MAPK13 complexes with four different inhibitor compounds of greatly varying potency. RESULTS: These inhibitors display IC50 values either in the nanomolar range or micromolar range (>800-fold range). The nanomolar inhibitors exhibit much longer ligand-enzyme complex half-lives compared to the micromolar inhibitors as measured by biolayer interferometry. Crystal structures of the MAPK13 inhibitor complexes reveal that the nanomolar inhibitors engage MAPK13 in the DFG-out binding mode, while the micromolar inhibitors are in the DFG-in mode. Detailed structural and computational docking analyses suggest that this difference in binding mode engagement is driven by conformational restraints imposed by the chemical structure of the inhibitors, and may be fortified by an additional hydrogen bond to MAPK13 in the nanomolar inhibitors. CONCLUSIONS: These studies provide a structural basis for understanding the differences in potency exhibited by these inhibitors. GENERAL SIGNIFICANCE: They also provide the groundwork for future studies to improve specificity, potency, pharmacodynamics, and pharmacokinetic properties.


Subject(s)
Mitogen-Activated Protein Kinase 13/antagonists & inhibitors , Protein Kinase Inhibitors/chemistry , Binding Sites , Humans , Mitogen-Activated Protein Kinase 13/chemistry , Mitogen-Activated Protein Kinase 13/metabolism , Protein Binding , Protein Kinase Inhibitors/pharmacology , Quantitative Structure-Activity Relationship
12.
J Exp Med ; 212(5): 681-97, 2015 May 04.
Article in English | MEDLINE | ID: mdl-25897174

ABSTRACT

Viral infections and type 2 immune responses are thought to be critical for the development of chronic respiratory disease, but the link between these events needs to be better defined. Here, we study a mouse model in which infection with a mouse parainfluenza virus known as Sendai virus (SeV) leads to long-term activation of innate immune cells that drive IL-13-dependent lung disease. We find that chronic postviral disease (signified by formation of excess airway mucus and accumulation of M2-differentiating lung macrophages) requires macrophage expression of triggering receptor expressed on myeloid cells-2 (TREM-2). Analysis of mechanism shows that viral replication increases lung macrophage levels of intracellular and cell surface TREM-2, and this action prevents macrophage apoptosis that would otherwise occur during the acute illness (5-12 d after inoculation). However, the largest increases in TREM-2 levels are found as the soluble form (sTREM-2) long after clearance of infection (49 d after inoculation). At this time, IL-13 and the adapter protein DAP12 promote TREM-2 cleavage to sTREM-2 that is unexpectedly active in preventing macrophage apoptosis. The results thereby define an unprecedented mechanism for a feed-forward expansion of lung macrophages (with IL-13 production and consequent M2 differentiation) that further explains how acute infection leads to chronic inflammatory disease.


Subject(s)
Apoptosis/immunology , Lung Diseases/immunology , Macrophages, Alveolar/immunology , Membrane Glycoproteins/immunology , Receptors, Immunologic/immunology , Respirovirus Infections/immunology , Sendai virus/physiology , Animals , Apoptosis/genetics , Cell Survival/genetics , Cell Survival/immunology , Immunity, Innate/genetics , Interleukin-13/genetics , Interleukin-13/immunology , Lung Diseases/genetics , Lung Diseases/pathology , Lung Diseases/virology , Macrophages, Alveolar/pathology , Membrane Glycoproteins/genetics , Mice , Mice, Knockout , Receptors, Immunologic/genetics , Respirovirus Infections/genetics , Respirovirus Infections/pathology , Virus Replication/genetics , Virus Replication/immunology
13.
J Vis Exp ; (106): e53445, 2015 Dec 23.
Article in English | MEDLINE | ID: mdl-26780656

ABSTRACT

Production of secreted mammalian proteins for structural and biophysical studies can be challenging, time intensive, and costly. Here described is a time and cost efficient protocol for secreted protein expression in mammalian cells and one step purification using nickel affinity chromatography. The system is based on large scale transient transfection of mammalian cells in suspension, which greatly decreases the time to produce protein, as it eliminates steps, such as developing expression viruses or generating stable expressing cell lines. This protocol utilizes cheap transfection agents, which can be easily made by simple chemical modification, or moderately priced transfection agents, which increase yield through increased transfection efficiency and decreased cytotoxicity. Careful monitoring and maintaining of media glucose levels increases protein yield. Controlling the maturation of native glycans at the expression step increases the final yield of properly folded and functional mammalian proteins, which are ideal properties to pursue X-ray crystallography. In some cases, single step purification produces protein of sufficient purity for crystallization, which is demonstrated here as an example case.


Subject(s)
Glycoproteins/biosynthesis , Glycoproteins/isolation & purification , Transfection/methods , Alkaloids/chemistry , Cell Line , Chromatography, Affinity/methods , Crystallization/methods , Crystallography, X-Ray , Glycoproteins/chemistry , Glycoproteins/genetics , HEK293 Cells , Humans , Nitrilotriacetic Acid/analogs & derivatives , Nitrilotriacetic Acid/chemistry , Organometallic Compounds/chemistry , Polyethyleneimine/chemistry , Recombinant Proteins/biosynthesis , Recombinant Proteins/chemistry , Recombinant Proteins/genetics , Recombinant Proteins/isolation & purification , Transfection/economics
14.
Protein Expr Purif ; 96: 32-8, 2014 Apr.
Article in English | MEDLINE | ID: mdl-24508568

ABSTRACT

TREM-2 (triggering receptor expressed on myeloid cells-2) is an innate immune receptor expressed on dendritic cells, macrophages, osteoclasts, and microglia. Recent genetic studies have reported the occurrence of point mutations in TREM-2 that correlate with a dramatically increased risk for the development of neurodegenerative diseases, including Alzheimer's disease, frontotemporal dementia, and Parkinson's disease. Structural and biophysical studies of wild-type and mutant TREM-2 ectodomains are required to understand the functional consequences of these mutations. In order to facilitate these studies, we undertook the production and crystallization of these proteins. Here we demonstrate that, unlike many single Ig domain proteins, TREM-2 could not be readily refolded from bacterially-expressed inclusion bodies. Instead, we developed a mammalian-cell based expression system for the successful production of wild-type and mutant TREM-2 proteins in milligram quantities and a single-chromatography-step purification scheme that produced diffraction-quality crystals. These crystals diffract to a resolution of 3.3 Å and produce data sufficient for structure determination. We describe herein the procedures to produce wild-type and mutant human TREM-2 Ig domains in sufficient quantities for structural and biophysical studies. Such studies are crucial to understand the functional consequences of TREM-2 point mutations linked to the development of neurodegenerative diseases and, ultimately, to develop patient-specific molecular therapies to treat them.


Subject(s)
Inflammation/pathology , Membrane Glycoproteins/genetics , Membrane Glycoproteins/ultrastructure , Neurodegenerative Diseases/pathology , Receptors, Immunologic/genetics , Receptors, Immunologic/ultrastructure , Cloning, Molecular , Crystallography, X-Ray , Gene Expression , Humans , Membrane Glycoproteins/biosynthesis , Mutation , Protein Folding , Protein Structure, Tertiary , Receptors, Immunologic/biosynthesis
15.
J Biol Chem ; 288(40): 28869-80, 2013 Oct 04.
Article in English | MEDLINE | ID: mdl-23963447

ABSTRACT

Microfibril-associated glycoprotein (MAGP) 1 and 2 are evolutionarily related but structurally divergent proteins that are components of microfibrils of the extracellular matrix. Using mice with a targeted inactivation of Mfap5, the gene for MAGP2 protein, we demonstrate that MAGPs have shared as well as unique functions in vivo. Mfap5(-/-) mice appear grossly normal, are fertile, and have no reduction in life span. Cardiopulmonary development is typical. The animals are normotensive and have vascular compliance comparable with age-matched wild-type mice, which is indicative of normal, functional elastic fibers. Loss of MAGP2 alone does not significantly alter bone mass or architecture, and loss of MAGP2 in tandem with loss of MAGP1 does not exacerbate MAGP1-dependent osteopenia. MAGP2-deficient mice are neutropenic, which contrasts with monocytopenia described in MAGP1-deficient animals. This suggests that MAGP1 and MAGP2 have discrete functions in hematopoiesis. In the cardiovascular system, MAGP1;MAGP2 double knockout mice (Mfap2(-/-);Mfap5(-/-)) show age-dependent aortic dilation. These findings indicate that MAGPs have shared primary functions in maintaining large vessel integrity. In solid phase binding assays, MAGP2 binds active TGFß1, TGFß2, and BMP2. Together, these data demonstrate that loss of MAGP2 expression in vivo has pleiotropic effects potentially related to the ability of MAGP2 to regulate growth factors or participate in cell signaling.


Subject(s)
Contractile Proteins/deficiency , Contractile Proteins/metabolism , Extracellular Matrix Proteins/deficiency , Extracellular Matrix Proteins/metabolism , Genetic Pleiotropy , Alleles , Alternative Splicing/genetics , Amino Acid Sequence , Animals , Bone Density , Bone Morphogenetic Proteins/metabolism , Bone and Bones/pathology , Bone and Bones/physiopathology , Cell Movement , Contractile Proteins/chemistry , Exons/genetics , Extracellular Matrix Proteins/chemistry , Gene Targeting , Leukocyte Count , Male , Mice , Mice, Knockout , Molecular Sequence Data , Mutant Proteins/chemistry , Mutant Proteins/genetics , Mutant Proteins/metabolism , Neutropenia/metabolism , Neutropenia/pathology , Neutrophils/metabolism , Neutrophils/pathology , Organ Size , Protein Binding , RNA Splicing Factors , RNA Stability/genetics , RNA, Messenger/genetics , RNA, Messenger/metabolism , Transcription, Genetic , Transforming Growth Factor beta/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL
...