Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 116
Filter
1.
Sci Data ; 11(1): 429, 2024 Apr 25.
Article in English | MEDLINE | ID: mdl-38664431

ABSTRACT

While research has unveiled and quantified brain markers of abnormal neurodevelopment, clinicians still work with qualitative metrics for MRI brain investigation. The purpose of the current article is to bridge the knowledge gap between case-control cohort studies and individual patient care. Here, we provide a unique dataset of seventy-three 3-to-17 years-old healthy subjects acquired with a 6-minute MRI protocol encompassing T1 and T2 relaxation quantitative sequence that can be readily implemented in the clinical setting; MP2RAGE for T1 mapping and the prototype sequence GRAPPATINI for T2 mapping. White matter and grey matter volumes were automatically quantified. We further provide normative developmental curves based on these two imaging sequences; T1, T2 and volume normative ranges with respect to age were computed, for each ROI of a pediatric brain atlas. This open-source dataset provides normative values allowing to position individual patients acquired with the same protocol on the brain maturation curve and as such provides potentially useful quantitative biomarkers facilitating precise and personalized care.


Subject(s)
Brain , Magnetic Resonance Imaging , Humans , Brain/diagnostic imaging , Brain/growth & development , Child , Child, Preschool , Adolescent , Male , Female , White Matter/diagnostic imaging , White Matter/growth & development , Gray Matter/diagnostic imaging
2.
J Neurol ; 271(2): 631-641, 2024 Feb.
Article in English | MEDLINE | ID: mdl-37819462

ABSTRACT

OBJECTIVES: Microstructural characterization of patients with multiple sclerosis (MS) has been shown to correlate better with disability compared to conventional radiological biomarkers. Quantitative MRI provides effective means to characterize microstructural brain tissue changes both in lesions and normal-appearing brain tissue. However, the impact of the location of microstructural alterations in terms of neuronal pathways has not been thoroughly explored so far. Here, we study the extent and the location of tissue changes probed using quantitative MRI along white matter (WM) tracts extracted from a connectivity atlas. METHODS: We quantified voxel-wise T1 tissue alterations compared to normative values in a cohort of 99 MS patients. For each WM tract, we extracted metrics reflecting tissue alterations both in lesions and normal-appearing WM and correlated these with cross-sectional disability and disability evolution after 2 years. RESULTS: In early MS patients, T1 alterations in normal-appearing WM correlated better with disability evolution compared to cross-sectional disability. Further, the presence of lesions in supratentorial tracts was more strongly associated with cross-sectional disability, while microstructural alterations in infratentorial pathways yielded higher correlations with disability evolution. In progressive patients, all major WM pathways contributed similarly to explaining disability, and correlations with disability evolution were generally poor. CONCLUSIONS: We showed that microstructural changes evaluated in specific WM pathways contribute to explaining future disability in early MS, hence highlighting the potential of tract-wise analyses in monitoring disease progression. Further, the proposed technique allows to estimate WM tract-specific microstructural characteristics in clinically compatible acquisition times, without the need for advanced diffusion imaging.


Subject(s)
Multiple Sclerosis , White Matter , Humans , Multiple Sclerosis/diagnostic imaging , Multiple Sclerosis/pathology , Cross-Sectional Studies , Brain/diagnostic imaging , Brain/pathology , Magnetic Resonance Imaging/methods , White Matter/diagnostic imaging , White Matter/pathology
3.
Magn Reson Med ; 91(3): 1057-1066, 2024 Mar.
Article in English | MEDLINE | ID: mdl-37929608

ABSTRACT

PURPOSE: To develop a self-navigated motion compensation strategy for 3D radial MRI that can compensate for continuous head motion by measuring rigid body motion parameters with high temporal resolution from the central k-space acquisition point (self-encoded FID navigator) in each radial spoke. METHODS: A forward model was created from low-resolution calibration data to simulate the effect of relative motion between the coil sensitivity profiles and the underlying object on the self-encoded FID navigator signal. Trajectory deviations were included in the model as low spatial-order field variations. Three volunteers were imaged at 3 T using a modified 3D gradient-echo sequence acquired with a Kooshball trajectory while performing abrupt and continuous head motion. Rigid body-motion parameters were estimated from the central k-space signal of each spoke using a least-squares fitting algorithm. The accuracy of self-navigated motion parameters was assessed relative to an established external tracking system. Quantitative image quality metrics were computed for images with and without retrospective correction using external and self-navigated motion measurements. RESULTS: Self-encoded FID navigators achieved mean absolute errors of 0.69 ± 0.82 mm and 0.73 ± 0.87° relative to external tracking for maximum motion amplitudes of 12 mm and 10°. Retrospective correction of the 3D radial data resulted in substantially improved image quality for both abrupt and continuous motion paradigms, comparable to external tracking results. CONCLUSIONS: Accurate rigid body motion parameters can be rapidly obtained from self-encoded FID navigator signals in 3D radial MRI to continuously correct for head movements. This approach is suitable for robust neuroanatomical imaging in subjects that exhibit patterns of large and frequent motion.


Subject(s)
Image Processing, Computer-Assisted , Imaging, Three-Dimensional , Humans , Image Processing, Computer-Assisted/methods , Imaging, Three-Dimensional/methods , Retrospective Studies , Magnetic Resonance Imaging/methods , Motion , Artifacts , Brain
4.
Mult Scler ; 29(11-12): 1437-1451, 2023 10.
Article in English | MEDLINE | ID: mdl-37840276

ABSTRACT

BACKGROUND: Early diagnosis and treatment of patients with multiple sclerosis (MS) are associated with better outcomes; however, diagnostic delays remain a major problem. OBJECTIVE: Describe the prevalence, determinants and consequences of delayed diagnoses. METHODS: This single-centre ambispective study analysed 146 adult relapsing-remitting MS patients (2016-2021) for frequency and determinants of diagnostic delays and their associations with clinical, cognitive, imaging and biochemical measures. RESULTS: Diagnostic delays were identified in 77 patients (52.7%), including 42 (28.7%) physician-dependent cases and 35 (24.0%) patient-dependent cases. Diagnosis was delayed in 22 (15.1%) patients because of misdiagnosis by a neurologist. A longer diagnostic delay was associated with trends towards greater Expanded Disability Status Scale (EDSS) scores (B = 0.03; p = 0.034) and greater z-score of the blood neurofilament light chain (B = 0.35; p = 0.031) at the time of diagnosis. Compared with patients diagnosed at their first clinical relapse, patients with a history of >1 relapse at diagnosis (n = 63; 43.2%) had a trend towards greater EDSS scores (B = 0.06; p = 0.006) and number of total (B = 0.13; p = 0.040) and periventricular (B = 0.06; p = 0.039) brain lesions. CONCLUSION: Diagnostic delays in MS are common, often determined by early misdiagnosis and associated with greater disease burden.


Subject(s)
Multiple Sclerosis, Relapsing-Remitting , Multiple Sclerosis , Adult , Humans , Multiple Sclerosis/diagnosis , Multiple Sclerosis/epidemiology , Multiple Sclerosis/pathology , Delayed Diagnosis , Prevalence , Multiple Sclerosis, Relapsing-Remitting/diagnosis , Multiple Sclerosis, Relapsing-Remitting/epidemiology , Multiple Sclerosis, Relapsing-Remitting/pathology , Recurrence , Magnetic Resonance Imaging , Brain/pathology
5.
Eur Radiol Exp ; 7(1): 61, 2023 10 13.
Article in English | MEDLINE | ID: mdl-37833469

ABSTRACT

BACKGROUND: The corpus callosum (CC) is a key brain structure. In children with neurodevelopmental delay, we compared standard qualitative radiological assessments with an automatic quantitative tool. METHODS: We prospectively enrolled 73 children (46 males, 63.0%) with neurodevelopmental delay at single university hospital between September 2020 and September 2022. All of them underwent 1.5-T brain magnetic resonance imaging (MRI) including a magnetization-prepared 2 rapid acquisition gradient echoes - MP2RAGE sequence. Two radiologists blindly reviewed the images to classify qualitatively the CC into normal, hypoplasic, hyperplasic, and/or dysgenetic classes. An automatic tool (QuantiFIRE) was used to provide brain volumetry and T1 relaxometry automatically as well as deviations of those parameters compared with a healthy age-matched cohort. The MRI reference standard for CC volumetry was based on the Garel et al. study. Cohen κ statistics was used for interrater agreement. The radiologists and QuantiFIRE's diagnostic accuracy were compared with the reference standard using the Delong test. RESULTS: The CC was normal in 42 cases (57.5%), hypoplastic in 20 cases (27.4%), and hypertrophic in 11 cases (15.1%). T1 relaxometry values were abnormal in 26 children (35.6%); either abnormally high (18 cases, 24.6%) or low (8 cases, 11.0%). The interrater Cohen κ coefficient was 0.91. The diagnostic accuracy of the QuantiFIRE prototype was higher than that of the radiologists for hypoplastic and normal CC (p = 0.003 for both subgroups, Delong test). CONCLUSIONS: An automated volumetric and relaxometric assessment can assist the evaluation of brain structure such as the CC, particularly in the case of subtle abnormalities. RELEVANCE STATEMENT: Automated brain MRI segmentation combined with statistical comparison to normal volume and T1 relaxometry values can be a useful diagnostic support tool for radiologists. KEY POINTS: • Corpus callosum abnormality detection is challenging but clinically relevant. • Automated quantitative volumetric analysis had a higher diagnostic accuracy than that of visual appreciation of radiologists. • Quantitative T1 relaxometric analysis might help characterizing corpus callosum better.


Subject(s)
Corpus Callosum , Magnetic Resonance Imaging , Male , Humans , Child , Corpus Callosum/diagnostic imaging , Magnetic Resonance Imaging/methods , Brain
6.
Front Oncol ; 13: 1117148, 2023.
Article in English | MEDLINE | ID: mdl-37564932

ABSTRACT

Objective: The application value of T2 mapping in evaluating endometrial carcinoma (EMC) features remains unclear. The aim of the study was to determine the quantitative T2 values in EMC using a novel accelerated T2 mapping, and evaluate them for detection, classification,and grading of EMC. Materials and methods: Fifty-six patients with pathologically confirmed EMC and 17 healthy volunteers were prospectively enrolled in this study. All participants underwent pelvic magnetic resonance imaging, including DWI and accelerated T2 mapping, before treatment. The T2 and apparent diffusion coefficient (ADC) values of different pathologic EMC features were extracted and compared. Receiver operating characteristic (ROC) curve analysis was performed to analyze the diagnostic efficacy of the T2 and ADC values in distinguishing different pathological features of EMC. Results: The T2 values and ADC values were significantly lower in EMC than in normal endometrium (bothl p < 0.05). The T2 and ADC values were significantly different between endometrioid adenocarcinoma (EA) and non-EA (both p < 0.05) and EMC tumor grades (all p < 0.05) but not for EMC clinical types (both p > 0.05) and depth of myometrial invasion (both p > 0.05). The area under the ROC curve (AUC) was higher for T2 values than for ADC values in predicting grade 3 EA (0.939 vs. 0.764, p = 0.048). When combined T2 and ADC values, the AUC for predicting grade 3 EA showed a significant increase to 0.947 (p = 0.03) compared with those of ADC values. The T2 and ADC values were negatively correlated with the tumor grades (r = -0.706 and r = -0.537, respectively). Conclusion: Quantitative T2 values demonstrate potential suitability in discriminating between EMC and normal endometrium, EA and non-EA, grade 3 EA and grade 1/2 EA. Combining T2 and ADC values performs better in predicting the histological grades of EA in comparison with ADC values alone.

7.
bioRxiv ; 2023 May 15.
Article in English | MEDLINE | ID: mdl-37425913

ABSTRACT

Functional magnetic resonance imaging (fMRI) is a methodological cornerstone of neuroscience. Most studies measure blood-oxygen-level-dependent (BOLD) signal using echo-planar imaging (EPI), Cartesian sampling, and image reconstruction with a one-to-one correspondence between the number of acquired volumes and reconstructed images. However, EPI schemes are subject to trade-offs between spatial and temporal resolutions. We overcome these limitations by measuring BOLD with a gradient recalled echo (GRE) with 3D radial-spiral phyllotaxis trajectory at a high sampling rate (28.24ms) on standard 3T field-strength. The framework enables the reconstruction of 3D signal time courses with whole-brain coverage at simultaneously higher spatial (1mm 3 ) and temporal (up to 250ms) resolutions, as compared to optimized EPI schemes. Additionally, artifacts are corrected before image reconstruction; the desired temporal resolution is chosen after scanning and without assumptions on the shape of the hemodynamic response. By showing activation in the calcarine sulcus of 20 participants performing an ON-OFF visual paradigm, we demonstrate the reliability of our method for cognitive neuroscience research.

8.
Magn Reson Med ; 90(6): 2348-2361, 2023 Dec.
Article in English | MEDLINE | ID: mdl-37496187

ABSTRACT

PURPOSE: To develop SPARCQ (Signal Profile Asymmetries for Rapid Compartment Quantification), a novel approach to quantify fat fraction (FF) using asymmetries in the phase-cycled balanced SSFP (bSSFP) profile. METHODS: SPARCQ uses phase-cycling to obtain bSSFP frequency profiles, which display asymmetries in the presence of fat and water at certain TRs. For each voxel, the measured signal profile is decomposed into a weighted sum of simulated profiles via multi-compartment dictionary matching. Each dictionary entry represents a single-compartment bSSFP profile with a specific off-resonance frequency and relaxation time ratio. Using the results of dictionary matching, the fractions of the different off-resonance components are extracted for each voxel, generating quantitative maps of water and FF and banding-artifact-free images for the entire image volume. SPARCQ was validated using simulations, experiments in a water-fat phantom and in knees of healthy volunteers. Experimental results were compared with reference proton density FFs obtained with 1 H-MRS (phantoms) and with multiecho gradient-echo MRI (phantoms and volunteers). SPARCQ repeatability was evaluated in six scan-rescan experiments. RESULTS: Simulations showed that FF quantification is accurate and robust for SNRs greater than 20. Phantom experiments demonstrated good agreement between SPARCQ and gold standard FFs. In volunteers, banding-artifact-free quantitative maps and water-fat-separated images obtained with SPARCQ and ME-GRE demonstrated the expected contrast between fatty and non-fatty tissues. The coefficient of repeatability of SPARCQ FF was 0.0512. CONCLUSION: SPARCQ demonstrates potential for fat quantification using asymmetries in bSSFP profiles and may be a promising alternative to conventional FF quantification techniques.

9.
Neuroimage ; 276: 120173, 2023 08 01.
Article in English | MEDLINE | ID: mdl-37201641

ABSTRACT

T1-weighted structural MRI is widely used to measure brain morphometry (e.g., cortical thickness and subcortical volumes). Accelerated scans as fast as one minute or less are now available but it is unclear if they are adequate for quantitative morphometry. Here we compared the measurement properties of a widely adopted 1.0 mm resolution scan from the Alzheimer's Disease Neuroimaging Initiative (ADNI = 5'12'') with two variants of highly accelerated 1.0 mm scans (compressed-sensing, CSx6 = 1'12''; and wave-controlled aliasing in parallel imaging, WAVEx9 = 1'09'') in a test-retest study of 37 older adults aged 54 to 86 (including 19 individuals diagnosed with a neurodegenerative dementia). Rapid scans produced highly reliable morphometric measures that largely matched the quality of morphometrics derived from the ADNI scan. Regions of lower reliability and relative divergence between ADNI and rapid scan alternatives tended to occur in midline regions and regions with susceptibility-induced artifacts. Critically, the rapid scans yielded morphometric measures similar to the ADNI scan in regions of high atrophy. The results converge to suggest that, for many current uses, extremely rapid scans can replace longer scans. As a final test, we explored the possibility of a 0'49'' 1.2 mm CSx6 structural scan, which also showed promise. Rapid structural scans may benefit MRI studies by shortening the scan session and reducing cost, minimizing opportunity for movement, creating room for additional scan sequences, and allowing for the repetition of structural scans to increase precision of the estimates.


Subject(s)
Alzheimer Disease , Humans , Aged , Alzheimer Disease/diagnosis , Reproducibility of Results , Brain/diagnostic imaging , Magnetic Resonance Imaging/methods , Neuroimaging/methods
10.
MAGMA ; 36(5): 823-836, 2023 Oct.
Article in English | MEDLINE | ID: mdl-36847989

ABSTRACT

OBJECTIVE: The Fluid And White matter Suppression (FLAWS) MRI sequence provides multiple T1-weighted contrasts of the brain in a single acquisition. However, the FLAWS acquisition time is approximately 8 min with a standard GRAPPA 3 acceleration factor at 3 T. This study aims at reducing the FLAWS acquisition time by providing a new sequence optimization based on a Cartesian phyllotaxis k-space undersampling and a compressed sensing (CS) reconstruction. This study also aims at showing that T1 mapping can be performed with FLAWS at 3 T. MATERIALS AND METHODS: The CS FLAWS parameters were determined using a method based on a profit function maximization under constraints. The FLAWS optimization and T1 mapping were assessed with in-silico, in-vitro and in-vivo (10 healthy volunteers) experiments conducted at 3 T. RESULTS: In-silico, in-vitro and in-vivo experiments showed that the proposed CS FLAWS optimization allows the acquisition time of a 1 mm-isotropic full-brain scan to be reduced from [Formula: see text] to [Formula: see text] without decreasing image quality. In addition, these experiments demonstrate that T1 mapping can be performed with FLAWS at 3 T. DISCUSSION: The results obtained in this study suggest that the recent advances in FLAWS imaging allow to perform multiple T1-weighted contrast imaging and T1 mapping in a single [Formula: see text] sequence acquisition.


Subject(s)
White Matter , Humans , White Matter/diagnostic imaging , Magnetic Resonance Imaging/methods , Brain/diagnostic imaging , Neuroimaging , Head , Image Processing, Computer-Assisted
11.
Neuroimage Clin ; 37: 103349, 2023.
Article in English | MEDLINE | ID: mdl-36801600

ABSTRACT

OBJECTIVES AND AIMS: Quantitative MRI (qMRI) has greatly improved the sensitivity and specificity of microstructural brain pathology in multiple sclerosis (MS) when compared to conventional MRI (cMRI). More than cMRI, qMRI also provides means to assess pathology within the normal-appearing and lesion tissue. In this work, we further developed a method providing personalized quantitative T1 (qT1) abnormality maps in individual MS patients by modeling the age dependence of qT1 alterations. In addition, we assessed the relationship between qT1 abnormality maps and patients' disability, in order to evaluate the potential value of this measurement in clinical practice. METHODS: We included 119 MS patients (64 relapsing-remitting MS (RRMS), 34 secondary progressive MS (SPMS), 21 primary progressive MS (PPMS)), and 98 Healthy Controls (HC). All individuals underwent 3T MRI examinations, including Magnetization Prepared 2 Rapid Acquisition Gradient Echoes (MP2RAGE) for qT1 maps and High-Resolution 3D Fluid Attenuated Inversion Recovery (FLAIR) imaging. To calculate personalized qT1 abnormality maps, we compared qT1 in each brain voxel in MS patients to the average qT1 obtained in the same tissue (grey/white matter) and region of interest (ROI) in healthy controls, hereby providing individual voxel-based Z-score maps. The age dependence of qT1 in HC was modeled using linear polynomial regression. We computed the average qT1 Z-scores in white matter lesions (WMLs), normal-appearing white matter (NAWM), cortical grey matter lesions (GMcLs) and normal-appearing cortical grey matter (NAcGM). Lastly, a multiple linear regression (MLR) model with the backward selection including age, sex, disease duration, phenotype, lesion number, lesion volume and average Z-score (NAWM/NAcGM/WMLs/GMcLs) was used to assess the relationship between qT1 measures and clinical disability (evaluated with EDSS). RESULTS: The average qT1 Z-score was higher in WMLs than in NAWM. (WMLs: 1.366 ± 0.409, NAWM: -0.133 ± 0.288, [mean ± SD], p < 0.001). The average Z-score in NAWM in RRMS patients was significantly lower than in PPMS patients (p = 0.010). The MLR model showed a strong association between average qT1 Z-scores in white matter lesions (WMLs) and EDSS (R2 = 0.549, ß = 0.178, 97.5 % CI = 0.030 to 0.326, p = 0.019). Specifically, we measured a 26.9 % increase in EDSS per unit of qT1 Z-score in WMLs in RRMS patients (R2 = 0.099, ß = 0.269, 97.5 % CI = 0.078 to 0.461, p = 0.007). CONCLUSIONS: We showed that personalized qT1 abnormality maps in MS patients provide measures related to clinical disability, supporting the use of those maps in clinical practice.


Subject(s)
Multiple Sclerosis, Chronic Progressive , Multiple Sclerosis, Relapsing-Remitting , Multiple Sclerosis , Humans , Multiple Sclerosis/pathology , Multiple Sclerosis, Chronic Progressive/pathology , Multiple Sclerosis, Relapsing-Remitting/diagnostic imaging , Multiple Sclerosis, Relapsing-Remitting/pathology , Brain/diagnostic imaging , Brain/pathology , Magnetic Resonance Imaging/methods
12.
Invest Radiol ; 58(5): 337-345, 2023 05 01.
Article in English | MEDLINE | ID: mdl-36730698

ABSTRACT

OBJECTIVES: The precise location of multiple sclerosis (MS) cortical lesions can be very challenging at 3 T, yet distinguishing them from subcortical lesions is essential for the diagnosis and prognosis of the disease. Compressed sensing-accelerated fluid and white matter suppression imaging (CS-FLAWS) is a new magnetic resonance imaging sequence derived from magnetization-prepared 2 rapid acquisition gradient echo with promising features for the detection and classification of MS lesions. The objective of this study was to compare the diagnostic performances of CS-FLAWS (evaluated imaging) and phase sensitive inversion recovery (PSIR; reference imaging) for classification of cortical lesions (primary objective) and infratentorial lesions (secondary objective) in MS, in combination with 3-dimensional (3D) double inversion recovery (DIR). MATERIALS AND METHODS: Prospective 3 T scans (MS first diagnosis or follow-up) acquired between March and August 2021 were retrospectively analyzed. All underwent 3D CS-FLAWS, axial 2D PSIR, and 3D DIR. Double-blinded reading sessions exclusively in axial plane and final consensual reading were performed to assess the number of cortical and infratentorial lesions. Wilcoxon test was used to compare the 2 imaging datasets (FLAWS + DIR and PSIR + DIR), and intraobserver and interobserver agreement was assessed using the intraclass correlation coefficient. RESULTS: Forty-two patients were analyzed (38 with relapsing-remitting MS, 29 women, 42.7 ± 12.6 years old). Compressed sensing-accelerated FLAWS allowed the identification of 263 cortical lesions versus 251 with PSIR ( P = 0.74) and 123 infratentorial lesions versus 109 with PSIR ( P = 0.63), corresponding to a nonsignificant difference between the 2 sequences. Compressed sensing-accelerated FLAWS exhibited fewer false-negative findings than PSIR either for cortical lesions (1 vs 13; P < 0.01) or infratentorial lesions (1 vs 15; P < 0.01). No false-positive findings were found with any of the 2 sequences. Diagnostic confidence was high for each contrast. CONCLUSION: Three-dimensional CS-FLAWS is as accurate as 2D PSIR imaging for classification of cortical and infratentorial MS lesions, with fewer false-negative findings, opening the way to a reliable full brain MS exploration in a clinically acceptable duration (5 minutes 15 seconds).


Subject(s)
Multiple Sclerosis , White Matter , Humans , Female , Adult , Middle Aged , Multiple Sclerosis/diagnostic imaging , Multiple Sclerosis/pathology , White Matter/diagnostic imaging , White Matter/pathology , Retrospective Studies , Prospective Studies , Brain/pathology , Magnetic Resonance Imaging/methods
13.
J Magn Reson Imaging ; 58(3): 864-876, 2023 09.
Article in English | MEDLINE | ID: mdl-36708267

ABSTRACT

BACKGROUND: Detecting new and enlarged lesions in multiple sclerosis (MS) patients is needed to determine their disease activity. LeMan-PV is a software embedded in the scanner reconstruction system of one vendor, which automatically assesses new and enlarged white matter lesions (NELs) in the follow-up of MS patients; however, multicenter validation studies are lacking. PURPOSE: To assess the accuracy of LeMan-PV for the longitudinal detection NEL white-matter MS lesions in a multicenter clinical setting. STUDY TYPE: Retrospective, longitudinal. SUBJECTS: A total of 206 patients with a definitive MS diagnosis and at least two follow-up MRI studies from five centers participating in the Swiss Multiple Sclerosis Cohort study. Mean age at first follow-up = 45.2 years (range: 36.9-52.8 years); 70 males. FIELD STRENGTH/SEQUENCE: Fluid attenuated inversion recovery (FLAIR) and T1-weighted magnetization prepared rapid gradient echo (T1-MPRAGE) sequences at 1.5 T and 3 T. ASSESSMENT: The study included 313 MRI pairs of datasets. Data were analyzed with LeMan-PV and compared with a manual "reference standard" provided by a neuroradiologist. A second rater (neurologist) performed the same analysis in a subset of MRI pairs to evaluate the rating-accuracy. The Sensitivity (Se), Specificity (Sp), Accuracy (Acc), F1-score, lesion-wise False-Positive-Rate (aFPR), and other measures were used to assess LeMan-PV performance for the detection of NEL at 1.5 T and 3 T. The performance was also evaluated in the subgroup of 123 MRI pairs at 3 T. STATISTICAL TESTS: Intraclass correlation coefficient (ICC) and Cohen's kappa (CK) were used to evaluate the agreement between readers. RESULTS: The interreader agreement was high for detecting new lesions (ICC = 0.97, Pvalue < 10-20 , CK = 0.82, P value = 0) and good (ICC = 0.75, P value < 10-12 , CK = 0.68, P value = 0) for detecting enlarged lesions. Across all centers, scanner field strengths (1.5 T, 3 T), and for NEL, LeMan-PV achieved: Acc = 61%, Se = 65%, Sp = 60%, F1-score = 0.44, aFPR = 1.31. When both follow-ups were acquired at 3 T, LeMan-PV accuracy was higher (Acc = 66%, Se = 66%, Sp = 66%, F1-score = 0.28, aFPR = 3.03). DATA CONCLUSION: In this multicenter study using clinical data settings acquired at 1.5 T and 3 T, and variations in MRI protocols, LeMan-PV showed similar sensitivity in detecting NEL with respect to other recent 3 T multicentric studies based on neural networks. While LeMan-PV performance is not optimal, its main advantage is that it provides automated clinical decision support integrated into the radiological-routine flow. EVIDENCE LEVEL: 4 TECHNICAL EFFICACY: Stage 2.


Subject(s)
Multiple Sclerosis , White Matter , Male , Humans , Adult , Middle Aged , Multiple Sclerosis/diagnostic imaging , Multiple Sclerosis/pathology , White Matter/diagnostic imaging , White Matter/pathology , Cohort Studies , Retrospective Studies , Magnetic Resonance Imaging/methods , Brain/diagnostic imaging , Brain/pathology
14.
Magn Reson Med ; 89(4): 1601-1616, 2023 04.
Article in English | MEDLINE | ID: mdl-36478417

ABSTRACT

PURPOSE: Studies at 3T have shown that T1 relaxometry enables characterization of brain tissues at the single-subject level by comparing individual physical properties to a normative atlas. In this work, an atlas of normative T1 values at 7T is introduced with 0.6 mm isotropic resolution and its clinical potential is explored in comparison to 3T. METHODS: T1 maps were acquired in two separate healthy cohorts scanned at 3T and 7T. Using transfer learning, a template-based brain segmentation algorithm was adapted to ultra-high field imaging data. After segmenting brain tissues, volumes were normalized into a common space, and an atlas of normative T1 values was established by modeling the T1 inter-subject variability. A method for single-subject comparisons restricted to white matter and subcortical structures was developed by computing Z-scores. The comparison was applied to eight patients scanned at both field strengths for proof of concept. RESULTS: The proposed method for morphometry delivered segmentation masks without statistically significant differences from those derived with the original pipeline at 3T and achieved accurate segmentation at 7T. The established normative atlas allowed characterizing tissue alterations in single-subject comparisons at 7T, and showed greater anatomical details compared with 3T results. CONCLUSION: A high-resolution quantitative atlas with an adapted pipeline was introduced and validated. Several case studies on different clinical conditions showed the feasibility, potential and limitations of high-resolution single-subject comparisons based on quantitative MRI atlases. This method in conjunction with 7T higher resolution broadens the range of potential applications of quantitative MRI in clinical practice.


Subject(s)
Magnetic Resonance Imaging , White Matter , Humans , Magnetic Resonance Imaging/methods , White Matter/diagnostic imaging , Algorithms , Brain/diagnostic imaging
15.
Eur Radiol ; 33(4): 2350-2357, 2023 Apr.
Article in English | MEDLINE | ID: mdl-36396791

ABSTRACT

OBJECTIVE: To investigate the utility of an automatic deep learning (DL) method for segmentation of T2 maps in patients with idiopathic inflammatory myopathy (IIM) against healthy controls, and also the association of quantitative T2 values in patients with laboratory and pulmonary findings. METHODS: Structural MRI and T2 mapping of bilateral thigh muscles from patients with IIM and healthy volunteers were segmented using dedicated software based on a pre-trained convolutional neural network. Incremental and federated learning were implemented for continuous adaptation and improvement. Muscle T2 values derived from DL segmentation were compared between patients and healthy controls, and T2 values of patients were further analyzed with serum muscle enzymes, and interstitial lung disease (ILD) which was diagnosed and graded based on chest HRCT. RESULTS: Overall, 64 patients (27 patients with dermatomyositis, 29 with polymyositis, and 8 with antisynthetase syndrome (ASS)) and 10 healthy controls were included. By using DL-based muscle segmentation, T2 values generated from T2 maps accurately differentiated patients from those of controls (p < 0.001) with a cutoff value of 36.4 ms (sensitivity 96.9%, and specificity 100%). In patients with IIM, muscle T2 values positively correlated with all the serum muscle enzymes (all p < 0.05). ILD score of patients with ASS was markedly higher than that of those without ASS (p = 0.011), while dissociation between the severity of muscular involvement and ILD was observed (p = 0.080). CONCLUSION: Automatic DL could be used to segment thigh muscles and help quantitatively assess muscular inflammation of IIM through T2 mapping. KEY POINTS: • Muscle T2 mapping automatically segmented by deep learning can differentiate IIM from healthy controls. • T2 value, an indicator of active muscle inflammation, positively correlates with serum muscle enzymes. • T2 mapping can detect muscle disease in patients with normal muscle enzyme levels.


Subject(s)
Deep Learning , Lung Diseases, Interstitial , Myositis , Animals , Inflammation , Lung Diseases, Interstitial/diagnostic imaging , Muscle, Skeletal/diagnostic imaging , Myositis/diagnostic imaging
16.
Magn Reson Med ; 89(1): 276-285, 2023 01.
Article in English | MEDLINE | ID: mdl-36063497

ABSTRACT

PURPOSE: Abdominal MRI scans may require breath-holding to prevent image quality degradation, which can be challenging for patients, especially children. In this study, we evaluate whether FID navigators can be used to measure and correct for motion prospectively, in real-time. METHODS: FID navigators were inserted into a 3D radial sequence with stack-of-stars sampling. MRI experiments were conducted on 6 healthy volunteers. A calibration scan was first acquired to create a linear motion model that estimates the kidney displacement due to respiration from the FID navigator signal. This model was then applied to predict and prospectively correct for motion in real time during deep and continuous deep breathing scans. Resultant images acquired with the proposed technique were compared with those acquired without motion correction. Dice scores were calculated between inhale/exhale motion states. Furthermore, images acquired using the proposed technique were compared with images from extra-dimensional golden-angle radial sparse parallel, a retrospective motion state binning technique. RESULTS: Images reconstructed for each motion state show that the kidneys' position could be accurately tracked and corrected with the proposed method. The mean of Dice scores computed between the motion states were improved from 0.93 to 0.96 using the proposed technique. Depiction of the kidneys was improved in the combined images of all motion states. Comparing results of the proposed technique and extra-dimensional golden-angle radial sparse parallel, high-quality images can be reconstructed from a fraction of spokes using the proposed method. CONCLUSION: The proposed technique reduces blurriness and motion artifacts in kidney imaging by prospectively correcting their position both in-plane and through-slice.


Subject(s)
Artifacts , Magnetic Resonance Imaging , Child , Humans , Retrospective Studies , Prospective Studies , Magnetic Resonance Imaging/methods , Motion , Respiration , Kidney/diagnostic imaging , Imaging, Three-Dimensional/methods , Image Processing, Computer-Assisted/methods
17.
Invest Radiol ; 58(1): 111-119, 2023 Jan 01.
Article in English | MEDLINE | ID: mdl-36165990

ABSTRACT

ABSTRACT: This review summarizes the existing techniques and methods used to generate synthetic contrasts from magnetic resonance imaging data focusing on musculoskeletal magnetic resonance imaging. To that end, the different approaches were categorized into 3 different methodological groups: mathematical image transformation, physics-based, and data-driven approaches. Each group is characterized, followed by examples and a brief overview of their clinical validation, if present. Finally, we will discuss the advantages, disadvantages, and caveats of synthetic contrasts, focusing on the preservation of image information, validation, and aspects of the clinical workflow.


Subject(s)
Magnetic Resonance Imaging , Musculoskeletal System , Magnetic Resonance Imaging/methods , Workflow , Musculoskeletal System/diagnostic imaging
18.
medRxiv ; 2023 Dec 28.
Article in English | MEDLINE | ID: mdl-38234845

ABSTRACT

Measurement error limits the statistical power to detect group differences and longitudinal change in structural MRI morphometric measures (e.g., hippocampal volume, prefrontal thickness). Recent advances in scan acceleration enable extremely fast T1-weighted scans (~1 minute) to achieve morphometric errors that are close to the errors in longer traditional scans. As acceleration allows multiple scans to be acquired in rapid succession, it becomes possible to pool estimates to increase measurement precision, a strategy known as "cluster scanning." Here we explored brain morphometry using cluster scanning in a test-retest study of 40 individuals (12 younger adults, 18 cognitively unimpaired older adults, and 10 adults diagnosed with mild cognitive impairment or Alzheimer's Dementia). Morphometric errors from a single compressed sensing (CS) 1.0mm scan with 6x acceleration (CSx6) were, on average, 12% larger than a traditional scan using the Alzheimer's Disease Neuroimaging Initiative (ADNI) protocol. Pooled estimates from four clustered CSx6 acquisitions led to errors that were 34% smaller than ADNI despite having a shorter total acquisition time. Given a fixed amount of time, a gain in measurement precision can thus be achieved by acquiring multiple rapid scans instead of a single traditional scan. Errors were further reduced when estimates were pooled from eight CSx6 scans (51% smaller than ADNI). Neither pooling across a break nor pooling across multiple scan resolutions boosted this benefit. We discuss the potential of cluster scanning to improve morphometric precision, boost statistical power, and produce more sensitive disease progression biomarkers.

19.
Phys Med ; 103: 166-174, 2022 Nov.
Article in English | MEDLINE | ID: mdl-36368208

ABSTRACT

PURPOSE: T1 Magnetization Prepared Two Rapid Acquisition Gradient Echo (MP2RAGE) with compress sensing (CS) has been proposed as an improvement of the standard MPRAGE sequence with multiple advantages including reduced acquisition time needed to provide a quantitative 3D anatomical image coupled with T1-map. Here we investigated the agreement between FreeSurfer-derived volume measurements obtained from MPRAGE and CS MP2RAGE acquisitions. METHODS: MPRAGE and CS MP2RAGE images of 37 subjects (14 patients with neurodegenerative disorders and 23 healthy controls) were acquired on a 3 T MR scanner and grey matter volumes were extracted using standard FreeSurfer parcellation. Lin's concordance correlation coefficient (Lin's CCC), Bland-Altman analysis, Passing-Bablok regression and DICE similarity coefficient were calculated to assess the agreement between the two. RESULTS: We found a good correspondence for most of the regions examined, with 93.5 % of them showing a mean DICE index >0.70. Poorer results were found with Lin's CCC especially for subcortical labels across patients. The Bland-Altman analysis showed CS MP2RAGE tended to measure lower cortical volumes compared to MPRAGE but in most cases the difference wasn't statistically relevant. The Passing-Bablock regression indicated overall an absence of systematic constant and proportional bias when CS MP2RAGE was used instead of MPRAGE. CONCLUSIONS: We found a good concordance for volumes obtained from MPRAGE and CS MP2RAGE images using FreeSurfer, suggesting a possible role of CS MP2RAGE for structural analysis with significant advantages like shorter acquisition time and the possibility to simultaneously obtain quantitative T1-maps of the brain enriching the diagnostic power of this technique.


Subject(s)
Breast Neoplasms , Magnetic Resonance Imaging , Humans , Female , Magnetic Resonance Imaging/methods , Gray Matter/diagnostic imaging , Brain/diagnostic imaging , Imaging, Three-Dimensional/methods
20.
Neuroimage Clin ; 36: 103205, 2022.
Article in English | MEDLINE | ID: mdl-36201950

ABSTRACT

The current diagnostic criteria for multiple sclerosis (MS) lack specificity, and this may lead to misdiagnosis, which remains an issue in present-day clinical practice. In addition, conventional biomarkers only moderately correlate with MS disease progression. Recently, some MS lesional imaging biomarkers such as cortical lesions (CL), the central vein sign (CVS), and paramagnetic rim lesions (PRL), visible in specialized magnetic resonance imaging (MRI) sequences, have shown higher specificity in differential diagnosis. Moreover, studies have shown that CL and PRL are potential prognostic biomarkers, the former correlating with cognitive impairments and the latter with early disability progression. As machine learning-based methods have achieved extraordinary performance in the assessment of conventional imaging biomarkers, such as white matter lesion segmentation, several automated or semi-automated methods have been proposed as well for CL, PRL, and CVS. In the present review, we first introduce these MS biomarkers and their imaging methods. Subsequently, we describe the corresponding machine learning-based methods that were proposed to tackle these clinical questions, putting them into context with respect to the challenges they are facing, including non-standardized MRI protocols, limited datasets, and moderate inter-rater variability. We conclude by presenting the current limitations that prevent their broader deployment and suggesting future research directions.


Subject(s)
Multiple Sclerosis , White Matter , Humans , Multiple Sclerosis/diagnostic imaging , Multiple Sclerosis/pathology , White Matter/pathology , Magnetic Resonance Imaging/methods , Veins , Machine Learning , Brain/pathology
SELECTION OF CITATIONS
SEARCH DETAIL
...