Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 25
Filter
Add more filters










Publication year range
1.
Toxicology ; 501: 153714, 2024 01.
Article in English | MEDLINE | ID: mdl-38141718

ABSTRACT

For genotoxic carcinogens, covalent binding to DNA is a critical initiating event in tumorigenesis. The present research investigated dose-effect relationships of three genotoxic carcinogens representing different structural classes, 2-acetylaminofluorene (2-AAF), benzo[a]pyrene (B[a]P) and quinoline (QUI), to assess the existence of no-observed-effect-levels (NOELs) for the formation of DNA adducts. Carcinogens were administered into the air sac of fertilized turkey eggs over wide dose ranges in three daily injections on days 22 to 24 of incubation. DNA adducts were measured in the fetal turkey livers by the 32P-nucleotide postlabeling (NPL) assay. B[a]P and QUI produced DNA adducts in a dosage-related manner and exhibited NOELs at 0.65 and 0.35 mg/kg bw/day, respectively. In contrast, 2-AAF formed DNA adducts at all tested dosages down to 0.005 mg/kg bw/day. Benchmark dose (BMD) analysis identified the potencies of 2-AAF and QUI to be similar, while B[a]P was the least potent compound. Overall, findings in fetal turkey livers demonstrated that exposure levels to genotoxic compounds that do not result in DNA adducts can exist but are not evident with all carcinogens of this type. The use of mechanistic dose-effect studies for genotoxic endpoints can provide critical information for prioritization of concerns for risk assessment.


Subject(s)
Carcinogens , DNA Adducts , Carcinogens/metabolism , DNA Adducts/metabolism , Liver , DNA Damage , 2-Acetylaminofluorene/pharmacology , 2-Acetylaminofluorene/toxicity
2.
Foods ; 11(18)2022 Sep 13.
Article in English | MEDLINE | ID: mdl-36140952

ABSTRACT

Commonly consumed foods and beverages can contain chemicals with reported carcinogenic activity in rodent models. Moreover, exposures to some of these substances have been associated with increased cancer risks in humans. Food-borne carcinogens span a range of chemical classes and can arise from natural or anthropogenic sources, as well as form endogenously. Important considerations include the mechanism(s) of action (MoA), their relevance to human biology, and the level of exposure in diet. The MoAs of carcinogens have been classified as either DNA-reactive (genotoxic), involving covalent reaction with nuclear DNA, or epigenetic, involving molecular and cellular effects other than DNA reactivity. Carcinogens are generally present in food at low levels, resulting in low daily intakes, although there are some exceptions. Carcinogens of the DNA-reactive type produce effects at lower dosages than epigenetic carcinogens. Several food-related DNA-reactive carcinogens, including aflatoxins, aristolochic acid, benzene, benzo[a]pyrene and ethylene oxide, are recognized by the International Agency for Research on Cancer (IARC) as causes of human cancer. Of the epigenetic type, the only carcinogen considered to be associated with increased cancer in humans, although not from low-level food exposure, is dioxin (TCDD). Thus, DNA-reactive carcinogens in food represent a much greater risk than epigenetic carcinogens.

3.
Int J Toxicol ; 41(4): 297-311, 2022 08.
Article in English | MEDLINE | ID: mdl-35658642

ABSTRACT

DNA damage is an established initiating event in the mutagenicity and carcinogenicity of genotoxic chemicals. Accordingly, assessment of this endpoint is critical for chemicals which are being developed for use in humans. To assess the ability of the Chicken Egg Genotoxicity Assay (CEGA) to detect genotoxic pharmaceuticals, a set of 23 compounds with different pharmacological and reported genotoxic effects was tested for the potential to produce nuclear DNA adducts and strand breaks in the embryo-fetal livers using the 32P-nucleotide postlabeling (NPL) and comet assays, respectively. Due to high toxicity, two aneugens, colchicine and vinblastine, and an autophagy inhibitor, hydroxychloroquine, could not be evaluated. Out of the 20 remaining pharmaceuticals, 10 including estrogen modulators, diethylstilbestrol and tamoxifen, antineoplastics cyclophosphamide, etoposide, and mitomycin C, antifungal griseofulvin, local anesthetics lidocaine and prilocaine, and antihistamines diphenhydramine and doxylamine, yielded clear positive outcomes in at least one of the assays. The antihypertensive vasodilator hydralazine and antineoplastics streptozotocin and teniposide, produced only DNA strand breaks, which were not dose-dependent, and thus, the results with these 3 pharmaceuticals were considered equivocal. No DNA damage was detected for 7 compounds, including the purine antagonist 6-thioguanine, antipyretic analgesics acetaminophen and phenacetin, antibiotic ciprofloxacin, antilipidemic clofibrate, anti-inflammatory ibuprofen, and sedative phenobarbital. However, low solubility of these compounds limited dosages tested in CEGA. Overall, results in CEGA were largely in concordance with the outcomes in other systems in vitro and in vivo, indicating that CEGA provides reliable detection of DNA damaging activity of genotoxic compounds. Further evaluations with a broader set of compounds would support this conclusion.


Subject(s)
Chickens , DNA Damage , Animals , Comet Assay/methods , DNA Adducts , Humans , Mutagenicity Tests/methods , Mutagens/toxicity , Pharmaceutical Preparations
4.
Article in English | MEDLINE | ID: mdl-31326031

ABSTRACT

DNA-damaging activities of twenty-four structurally diverse unsubstituted and substituted cyclic compounds were assessed in embryo-fetal chicken livers. Formation of DNA adducts and strand breaks were measured using the nucleotide 32P-postlabelling (NPL) and comet assays, respectively. Unsubstituted monocyclic benzene, polycyclic fused ring compound naphthalene, covalently connected polycyclic ring compound biphenyl, and heterocyclic ring compound fluorene did not produce DNA damage. Amino-substituted monocyclic compounds, aniline and p-phenylenediamine, as well as polycyclic 1-naphthylamine were also negative. In contrast, carcinogenic monocyclic methyl-substituted anilines: o-toluidine, 2,6-xylidine, 3,4-dimethylaniline, 4-chloro-o-toluidine; 2 methoxy-substituted methylaniline: p-cresidine; 2,4 and 2,6 diamino- or dinitro- substituted toluenes all produced DNA damage. Genotoxic polycyclic amino-substituted 2-naphthylamine, 4-aminobiphenyl, benzidine, methyl-substituted 3,2'-dimethyl-4-aminobiphenyl and 4-dimethylaminoazobenzene as well as amino- and nitro- fluorenes substituted at the 1 or 2 positions also were positive in at least one of the assays. Overall, the DNA damaging activity of cyclic compounds in embryo-fetal chicken livers reflected the type and position of the substitution on the aromatic ring. Additionally, substituted polycyclic compounds exhibited higher DNA-damaging potency compared to monocyclic chemicals. These results are congruent with in vivo findings in other species, establishing chicken eggs as a reliable system for structure-activity assessment of members of groups of related chemicals.


Subject(s)
Chick Embryo/drug effects , DNA Damage , Hydrocarbons, Cyclic/toxicity , Animals , Comet Assay , DNA Adducts/analysis , DNA Breaks, Single-Stranded , Liver/chemistry , Liver/drug effects , Liver/embryology , Molecular Structure , Mutagenicity Tests/methods , Specific Pathogen-Free Organisms , Structure-Activity Relationship
5.
Food Chem Toxicol ; 129: 424-433, 2019 Jul.
Article in English | MEDLINE | ID: mdl-31077736

ABSTRACT

Formation of DNA adducts by five alkenylbenzenes, safrole, methyl eugenol, eugenol, and asarone with either α- or ß-conformation, was analyzed in fetal avian livers in two in ovo models. DNA reactivity of the carcinogens safrole and methyl eugenol was previously demonstrated in the turkey egg model, whereas non-genotoxic eugenol was negative. In the current study, alkenylbenzenes were also tested in the chicken egg model. Injections with alkenylbenzenes were administered to fertilized turkey or chicken eggs for three consecutive days. Three hours after the last injection, liver samples were evaluated for DNA adduct formation using the 32P-nucleotide postlabeling assay. DNA samples from turkey livers were also analyzed for adducts using mass spectrometry. In both species, genotoxic alkenylbenzenes safrole, methyl eugenol, α- and ß-asarone produced DNA adducts, the presence and nature of which, with exception of safrole, were confirmed by mass spectrometry, validating the sensitivity of the 32P-postlabeling assay. Overall, the results of testing were congruent between fetal turkey and chicken livers, confirming that these organisms can be used interchangeably. Moreover, data obtained in both models is comparable to genotoxicity findings in other species, supporting the usefulness of avian models for the assessment of genotoxicity as a potential alternative to animal models.


Subject(s)
Benzene Derivatives/toxicity , DNA Adducts/chemistry , Liver/drug effects , Animals , Benzene Derivatives/metabolism , Chickens , Fetus/drug effects , Liver/embryology , Liver/metabolism , Structure-Activity Relationship , Turkeys
6.
Toxicol Res (Camb) ; 8(2): 123-145, 2019 Mar 01.
Article in English | MEDLINE | ID: mdl-30997017

ABSTRACT

Chemicals with carcinogenic activity in either animals or humans produce increases in neoplasia through diverse mechanisms. One mechanism is reaction with nuclear DNA. Other mechanisms consist of epigenetic effects involving either modifications of regulatory macromolecules or perturbation of cellular regulatory processes. The basis for distinguishing between carcinogens that have either DNA reactivity or an epigenetic activity as their primary mechanism of action is detailed in this review. In addition, important applications of information on these mechanisms of action to carcinogenicity testing and human risk assessment are discussed.

7.
Chem Biol Interact ; 301: 88-111, 2019 Mar 01.
Article in English | MEDLINE | ID: mdl-30763546

ABSTRACT

In the deliberations over many years on the question of thresholds for the carcinogenicity of chemicals, the dominant paradigm has been the linear no-threshold (LNT) model, derived from concepts formulated in radiation mutagenicity. Based on the analogy with radiation, the key mechanistic assumption underlying the assessment of the dose-effect of chemical-induced carcinogenicity has been that any dose, no matter how low, can lead to induction of mutations, which will result in some risk of neoplasia. The LNT assumption, however, was never well founded and, its application to chemical carcinogens, does not allow for differences in their disposition or mechanisms of action. These mechanisms include DNA-reactivity and epigenetic effects, resulting from very different properties of carcinogens, leading to different dose effects. This review of the research on dose effects of chemical carcinogens administered by repeat dosing for long duration reveals that only some experiments involving what are now recognized as DNA-reactive carcinogens yielded dose effects for induction of tumors which were consistent with the absence of a threshold (for 6/14 chemicals). None of these studies, however, included low doses documented not to produce genetic or other cellular toxicities that underlie carcinogenicity. Otherwise, most dose-effect experiments, including all with epigenetic agents (7), revealed no-observed-effect-levels for tumors, indicative of subthreshold doses. Based on highly informative experimental data, including relevant mechanistic data, it is concluded that no-effect-levels exist for both carcinogen-induced precursor effects and neoplasia. Accordingly, we conclude that, at non-toxic dosages, thresholds exist for the induction of experimental cancer by all types of carcinogens.


Subject(s)
Carcinogens/toxicity , DNA/genetics , Epigenesis, Genetic/drug effects , Animals , Dose-Response Relationship, Drug , Humans
8.
Arch Toxicol ; 93(3): 791-800, 2019 03.
Article in English | MEDLINE | ID: mdl-30552462

ABSTRACT

Exposure to environmental chemicals has been shown to have an impact on the epigenome. One example is a known human carcinogen 1,3-butadiene which acts primarily by a genotoxic mechanism, but also disrupts the chromatin structure by altering patterns of cytosine DNA methylation and histone modifications. Sex-specific differences in 1,3-butadiene-induced genotoxicity and carcinogenicity are well established; however, it remains unknown whether 1,3-butadiene-associated epigenetic alterations are also sex dependent. Therefore, we tested the hypothesis that inhalational exposure to 1,3-butadiene will result in sex-specific epigenetic alterations. DNA damage and epigenetic effects of 1,3-butadiene were evaluated in liver, lung, and kidney tissues of male and female mice of two inbred strains (C57BL/6J and CAST/EiJ). Mice were exposed to 0 or 425 ppm of 1,3-butadiene by inhalation (6 h/day, 5 days/week) for 2 weeks. Strain- and tissue-specific differences in 1,3-butadiene-induced DNA adducts and crosslinks were detected in the liver, lung and kidney; however, significant sex-specific differences in DNA damage were observed in the lung of C57BL/6J mice only. In addition, we assessed expression of the DNA repair genes and observed a marked upregulation of Mgmt in the kidney in female C57BL/6J mice. Sex-specific epigenetic effects of 1,3-butadiene exposure were evident in alterations of cytosine DNA methylation and histone modifications in the liver and lung in both strains. Specifically, we observed a loss of cytosine DNA methylation in the liver and lung of male and female 1,3-butadiene-exposed C57BL/6J mice, whereas hypermethylation was found in the liver and lung in 1,3-butadiene-exposed female CAST/EiJ mice. Our findings suggest that strain- and sex-specific effects of 1,3-butadiene on the epigenome may contribute to the known differences in cancer susceptibility.


Subject(s)
Butadienes/toxicity , Epigenesis, Genetic , Mutagens/toxicity , Animals , Butadienes/metabolism , DNA , DNA Adducts/metabolism , DNA Damage , DNA Methylation , Female , Inhalation Exposure , Kidney , Liver , Lung , Male , Mice , Mice, Inbred C57BL , Mutagens/metabolism , Sex Characteristics , Toxicity Tests
10.
Toxicol Sci ; 166(1): 82-96, 2018 11 01.
Article in English | MEDLINE | ID: mdl-30102407

ABSTRACT

The Chicken Egg Genotoxicity Assay (CEGA) demonstrated responsiveness to various DNA-reactive chemicals requiring metabolic activation, which implies broad bioactivation capability. To assess potential metabolic competence, expression profiles of metabolic genes in the embryo-chicken fetal liver were determined using microarray technology. Fertilized chicken eggs were injected under the CEGA protocol with vehicle (deionized water [DW]), the activation-dependent carcinogens, diethylnitrosamine (DEN), and N-nitrosodiethanolamine (NDELA) at doses producing no effect on survival. Previously in CEGA, DEN produced DNA damage, whereas NDELA did not. Expressions of 463 genes known to encode for phase I and II of endo- and xenobiotic metabolism were detected on the array. DW did not affect the expression of the selected genes, deregulating less than 1% of them. In contrast, DEN at 2 mg/egg and NDELA at 4 mg/egg produced significant transcriptomic alterations, up-regulating up to 41% and down-regulating over 31% of studied genes. Both nitrosamines modulated the majority of the genes in a similar manner, sharing 64 up-regulated and 93 down-regulated genes with respect to control group, indicating similarity in the regulation of their metabolism by avian liver. Differences in gene expression between DEN and NDELA were documented for several phase I CYP 450 genes that are responsible for nitrosamine biotransformation, as well as for phase II genes that regulate detoxication reactions. These findings could underlie the difference in genotoxicity of DEN and NDELA in CEGA. In conclusion, the analysis of gene expression profiles in embryo-chicken fetal liver dosed with dialkylnitrosamines demonstrated that avian species possess a complex array of inducible genes coding for biotransformation.


Subject(s)
Animal Testing Alternatives , Chickens , Nitrosamines/toxicity , Ovum/drug effects , Transcriptome/drug effects , Xenobiotics/toxicity , Animals , Biotransformation , In Vitro Techniques , Mutagenicity Tests , Nitrosamines/chemistry , Nitrosamines/metabolism , Ovum/metabolism , Xenobiotics/chemistry , Xenobiotics/metabolism
11.
Food Chem Toxicol ; 115: 228-243, 2018 May.
Article in English | MEDLINE | ID: mdl-29548853

ABSTRACT

Genotoxicity of flavor and fragrance materials was assessed in Turkey Egg Genotoxicity Assay (TEGA) using 32P-nucleotide postlabeling (NPL) and comet assays to detect hepatic DNA adducts and strand breaks. Twenty materials having results in GADD45a-Gluc 'BlueScreen HC' genotoxicity assay, and standard in vitro and in vivo tests, were selected to evaluate the accuracy of TEGA. Quinoline (QUI) and 2-acetylaminofluorene (AAF) served as positive comparators. Two materials, p-tert-butyldihydrocinnamaldehyde (BDHCA) and methyl eugenol (MEU) produced DNA adducts. BDHCA, p-t-butyl-α-methylhydrocinnamic aldehyde (BMHCA), trans-2-hexenal (HEX) and maltol (MAL) produced DNA strand breaks. Fifteen other materials were negative in both assays. Based on reports of oxidative DNA damage induction by MAL and 4-hydroxy-2.5-dimethyl-3(2H) furanone (HDMF), modified comet assays were conducted. Positive comet findings for MAL were not confirmed, and only equivocal evidence of oxidative damage was found. Accordingly, MAL was judged to have equivocal genotoxicity in TEGA. HDMF was positive in modified comet assay, indicating an ability to produce oxidative DNA damage. TEGA showed modest concordance with results in regulatory in vitro assays. Findings in TEGA, with few exceptions, were concordant with the results of in vivo genotoxicity and carcinogenicity testing. Thus, TEGA is an attractive alternative model for the assessment of genotoxic potential of chemicals in vivo.


Subject(s)
Comet Assay/methods , DNA Damage , Flavoring Agents/toxicity , Perfume/toxicity , Animals , Carcinogenicity Tests , DNA Adducts/metabolism , Eggs , Oxidative Stress/drug effects , Turkeys
12.
Chem Res Toxicol ; 30(7): 1470-1480, 2017 07 17.
Article in English | MEDLINE | ID: mdl-28613844

ABSTRACT

Exposure to acrylonitrile induces formation of tumors at multiple sites in rats, with females being more sensitive. The present study assessed possible mechanisms of acrylonitrile tumorigenicity, covalent DNA binding, DNA breakage, and oxidative DNA damage, in two target tissues, the brain and Zymbal's glands, of sensitive female Fischer (F344) and Sprague-Dawley (SD) rats. One group received acrylonitrile in drinking water at 100 ppm for 28 days. Two other groups were administered either acrylonitrile in drinking water at 100 ppm or drinking water alone for 27 days, followed by a single oral gavage dose of 11 mg/kg bw 14C-acrylonitrile on day 28. A positive control group received a single dose of 5 mg/kg bw of 7-14C-benzo[a]pyrene, on day 27 following the administration of drinking water for 26 days. Using liquid scintillation counting, no association of radiolabeled acrylonitrile with brain DNA was found. In accelerator mass spectrometry analysis, the association of 14C of acrylonitrile with DNA in brains was detected and was similar in both strains, which may reflect acrylonitrile binding to protein as well as to DNA. Nucleotide 32P-postlabeling assay analysis of brain samples from rats of both strains yielded no evidence of acrylonitrile DNA adducts. Negative conventional comet assay results indicate the absence of direct DNA strand breaks in the brain and Zymbal's gland in both strains of rats dosed with acrylonitrile. In both rat strains, positive results in an enhanced comet assay were found only in brain samples digested with formamidopyrimidine-DNA glycosylase but not with human 8-hydroxyguanine-DNA glycosylase, indicating possible oxidative DNA damage, other than 8-oxodG formation. In conclusion, definitive evidence of DNA binding of acrylonitrile in the brain and Zymbal's gland was not obtained under the test conditions. A role for oxidative stress in tumorigenesis in the brain but not Zymbal's gland may exist.


Subject(s)
Acrylonitrile/pharmacology , DNA Damage , DNA/chemistry , DNA/drug effects , Acrylonitrile/administration & dosage , Administration, Oral , Animals , Binding Sites/drug effects , Carcinogenicity Tests , Dose-Response Relationship, Drug , Female , Oxidation-Reduction , Rats , Rats, Inbred F344 , Rats, Sprague-Dawley
13.
Regul Toxicol Pharmacol ; 79 Suppl 2: S105-11, 2016 Aug.
Article in English | MEDLINE | ID: mdl-27328372

ABSTRACT

The use of a food substance is Generally Recognized as Safe (GRAS) through scientific procedures or experience based on common use in food. The pivotal data used for GRAS determination must be of common knowledge and should include evidence for safety under the conditions of intended use of the substance. Such evidence includes data on the identity and specifications of the substance, its properties of absorption, distribution, metabolism and excretion, and depending on the level of concern, data on genotoxicity, acute and subchronic toxicity, reproductive and developmental toxicity and carcinogenicity. Several alternative procedures can be used as the replacement for standard scientific procedures in order to improve the GRAS process.


Subject(s)
Consumer Product Safety , Food Additives/adverse effects , Food Industry/methods , Food Safety/methods , Toxicity Tests/methods , Animals , Carcinogenicity Tests , Consumer Product Safety/legislation & jurisprudence , Consumer Product Safety/standards , Dose-Response Relationship, Drug , Food Additives/standards , Food Industry/legislation & jurisprudence , Food Industry/standards , Government Regulation , Health Policy , Humans , Nutritive Value , Policy Making , Recommended Dietary Allowances , Risk Assessment , United States , United States Food and Drug Administration
14.
Toxicol Sci ; 150(2): 301-11, 2016 Apr.
Article in English | MEDLINE | ID: mdl-26719370

ABSTRACT

Certain alkenylbenzenes (AB), flavoring chemicals naturally occurring in spices and herbs, are established to be cytotoxic and hepatocarcinogenic in rodents. The purpose of the present study was to determine the DNA damaging potential of key representatives of this class using the Turkey Egg Genotoxicity Assay. Medium white turkey eggs with 22- to 24-day-old fetuses received three injections of nine AB with different carcinogenic potentials: safrole (1, 2 mg/egg), methyl eugenol (2, 4 mg/egg), estragole (20, 40 mg/egg), myristicin (25, 50 mg/egg), elemicin (20, 50 mg/egg), anethole (5, 10 mg/egg), methyl isoeugenol (40, 80 mg/egg), eugenol (1, 2.5 mg/egg), and isoeugenol (1, 4 mg/egg). Three hours after the last injection, fetal livers were harvested for measurement of DNA strand breaks, using the comet assay and DNA adducts formation, using the nucleotide(3) (2)P-postlabeling assay. Estragole, myristicin, and elemicin induced DNA stand breaks. These compounds as well as safrole, methyl eugenol and anethole, at the highest doses tested, induced DNA adduct formation. Methyl isoeugenol, eugenol, and isoeugenol did not induce genotoxicity. The genotoxic AB all had the structural features of either a double bond in the alkenyl side chain at the terminal 2',3'-position, favorable to formation of proximate carcinogenic 1'-hydroxymetabolite or terminal epoxide, or the absence of a free phenolic hydroxyl group crucial for formation of a nontoxic glucuronide conjugate. In contrast, methyl isoeugenol, eugenol and isoeugenol, which were nongenotoxic, possessed chemical features, unfavorable to activation.


Subject(s)
Benzene Derivatives , Benzodioxoles , DNA Damage , Flavoring Agents/toxicity , Liver/drug effects , Turkeys , Animals , Benzene Derivatives/chemistry , Benzene Derivatives/toxicity , Benzodioxoles/chemistry , Benzodioxoles/toxicity , Comet Assay , DNA Adducts/metabolism , Embryonic Development/drug effects , Embryonic Development/genetics , Flavoring Agents/chemistry , Liver/embryology , Liver/metabolism , Liver/pathology , Molecular Structure , Mutagenicity Tests , Structure-Activity Relationship , Turkeys/embryology
15.
Oncotarget ; 7(2): 1276-87, 2016 Jan 12.
Article in English | MEDLINE | ID: mdl-26657500

ABSTRACT

Over-expression of transferrin receptor 1 (TFRC) is observed in hepatocellular carcinoma (HCC); however, there is a lack of conclusive information regarding the mechanisms of this dysregulation. In the present study, we demonstrated a significant increase in the levels of TFRC mRNA and protein in preneoplastic livers from relevant experimental models of human hepatocarcinogenesis and in human HCC cells. Additionally, using the TCGA database, we demonstrated an over-expression of TFRC in human HCC tissue samples and a markedly decreased level of microRNA-152 (miR-152) when compared to non-tumor liver tissue. The results indicated that the increase in levels of TFRC in human HCC cells and human HCC tissue samples may be attributed, in part, to a post-transcriptional mechanism mediated by a down-regulation of miR-152. This was evidenced by a strong inverse correlation between the level of TFRC and the expression of miR-152 in human HCC cells (r = -0.99, p = 4. 7 × 10-9), and was confirmed by in vitro experiments showing that transfection of human HCC cell lines with miR-152 effectively suppressed TFRC expression. This suggests that miR-152-specific targeting of TFRC may provide a selective anticancer therapeutic approach for the treatment of HCC.


Subject(s)
Antigens, CD/genetics , Carcinoma, Hepatocellular/genetics , Gene Expression Regulation, Neoplastic , Liver Neoplasms/genetics , MicroRNAs/genetics , Receptors, Transferrin/genetics , 2-Acetylaminofluorene/toxicity , Animals , Antigens, CD/metabolism , Blotting, Western , Carcinogenesis/drug effects , Carcinogenesis/genetics , Carcinogens/toxicity , Carcinoma, Hepatocellular/metabolism , Carcinoma, Hepatocellular/pathology , Cell Line, Tumor , Hep G2 Cells , Humans , Liver Neoplasms/metabolism , Liver Neoplasms/pathology , Liver Neoplasms, Experimental/chemically induced , Liver Neoplasms, Experimental/genetics , Liver Neoplasms, Experimental/metabolism , Male , Rats, Sprague-Dawley , Receptors, Transferrin/metabolism , Reverse Transcriptase Polymerase Chain Reaction
16.
Food Chem Toxicol ; 81: 92-103, 2015 Jul.
Article in English | MEDLINE | ID: mdl-25862956

ABSTRACT

Bisphenol A (BPA), an industrial chemical used in the manufacture of polycarbonate and epoxy resins, binds to the nuclear estrogen receptor with an affinity 4-5 orders of magnitude lower than that of estradiol. We reported previously that "high BPA" [100,000 and 300,000 µg/kg body weight (bw)/day], but not "low BPA" (2.5-2700 µg/kg bw/day), induced clear adverse effects in NCTR Sprague-Dawley rats gavaged daily from gestation day 6 through postnatal day (PND) 90. The "high BPA" effects partially overlapped those of ethinyl estradiol (EE2, 0.5 and 5.0 µg/kg bw/day). To evaluate further the potential of "low BPA" to induce biological effects, here we assessed the global genomic DNA methylation and gene expression in the prostate and female mammary glands, tissues identified previously as potential targets of BPA, and uterus, a sensitive estrogen-responsive tissue. Both doses of EE2 modulated gene expression, including of known estrogen-responsive genes, and PND 4 global gene expression data showed a partial overlap of the "high BPA" effects with those of EE2. The "low BPA" doses modulated the expression of several genes; however, the absence of a dose response reduces the likelihood that these changes were causally linked to the treatment. These results are consistent with the toxicity outcomes.


Subject(s)
Benzhydryl Compounds/administration & dosage , Benzhydryl Compounds/toxicity , DNA Methylation/drug effects , Mammary Glands, Animal/drug effects , Phenols/administration & dosage , Phenols/toxicity , Prostate/drug effects , Uterus/drug effects , Administration, Oral , Animals , Chromatography, Liquid , Complement C3/genetics , Complement C3/metabolism , Dose-Response Relationship, Drug , Ethinyl Estradiol/administration & dosage , Ethinyl Estradiol/toxicity , Female , Gene Expression , Genomics/methods , Male , Mammary Glands, Animal/metabolism , Methyltransferases/metabolism , Pregnancy , Prenatal Exposure Delayed Effects/pathology , Prostate/metabolism , Protein Binding , Rats , Rats, Sprague-Dawley , Receptors, Estrogen/genetics , Receptors, Estrogen/metabolism , Receptors, Progesterone/genetics , Receptors, Progesterone/metabolism , S100 Calcium Binding Protein G/genetics , S100 Calcium Binding Protein G/metabolism , Tandem Mass Spectrometry , Uterus/metabolism , Vascular Endothelial Growth Factor A/genetics , Vascular Endothelial Growth Factor A/metabolism
17.
Toxicol Sci ; 144(2): 217-26, 2015 Apr.
Article in English | MEDLINE | ID: mdl-25539665

ABSTRACT

Furan is a heterocyclic organic compound produced in the chemical manufacturing industry and also found in a broad range of food products, including infant formulas and baby foods. Previous reports have indicated that the adverse biological effects of furan, including its liver tumorigenicity, may be associated with epigenetic abnormalities. In the present study, we investigated the persistence of epigenetic alterations in rat liver. Male F344 rats were treated by gavage 5 days per week with 8 mg furan/kg body weight (bw)/day for 90 days. After the last treatment, rats were divided randomly into 4 groups; 1 group of rats was sacrificed 24 h after the last treatment, whereas other groups were maintained without further furan treatment for an additional 90, 180, or 360 days. Treatment with furan for 90 days resulted in alterations in histone lysine methylation and acetylation, induction of base-excision DNA repair genes, suggesting oxidative damage to DNA, and changes in the gene expression in the livers. A majority of these furan-induced molecular changes was transient and disappeared after the cessation of furan treatment. In contrast, histone H3 lysine 9 and H3 lysine 56 showed a sustained and time-depended decrease in acetylation, which was associated with formation of heterochromatin and altered gene expression. These results indicate that furan-induced adverse effects may be mechanistically related to sustained changes in histone lysine acetylation that compromise the ability of cells to maintain and control properly the expression of genetic information.


Subject(s)
Epigenesis, Genetic , Furans/toxicity , Liver/drug effects , Acetylation , Animals , DNA Damage , Gene Expression Profiling , Histones/chemistry , Histones/metabolism , Lysine/metabolism , Male , Methylation , Rats , Rats, Inbred F344
18.
Toxicol Sci ; 142(2): 375-84, 2014 Dec.
Article in English | MEDLINE | ID: mdl-25237060

ABSTRACT

1,3-Butadiene (BD), a widely used industrial chemical and a ubiquitous environmental pollutant, is a known human carcinogen. Although genotoxicity is an established mechanism of the tumorigenicity of BD, epigenetic effects have also been observed in livers of mice exposed to the chemical. To better characterize the diverse molecular mechanisms of BD tumorigenicity, we evaluated genotoxic and epigenotoxic effects of BD exposure in mouse tissues that are target (lung and liver) and non-target (kidney) for BD-induced tumors. We hypothesized that epigenetic alterations may explain, at least in part, the tissue-specific differences in BD tumorigenicity in mice. We evaluated the level of N-7-(2,3,4-trihydroxybut-1-yl)guanine adducts and 1,4-bis-(guan-7-yl)-2,3-butanediol crosslinks, DNA methylation, and histone modifications in male C57BL/6 mice exposed to filtered air or 425 ppm of BD by inhalation (6 h/day, 5 days/week) for 2 weeks. Although DNA damage was observed in all three tissues of BD-exposed mice, variation in epigenetic effects clearly existed between the kidneys, liver, and lungs. Epigenetic alterations indicative of genomic instability, including demethylation of repetitive DNA sequences and alterations in histone-lysine acetylation, were evident in the liver and lung tissues of BD-exposed mice. Changes in DNA methylation were insignificant in the kidneys of treated mice, whereas marks of condensed heterochromatin and transcriptional silencing (histone-lysine trimethylation) were increased. These modifications may represent a potential mechanistic explanation for the lack of tumorigenesis in the kidney. Our results indicate that differential tissue susceptibility to chemical-induced tumorigenesis may be attributed to tissue-specific epigenetic alterations.


Subject(s)
Air Pollutants/toxicity , Butadienes/toxicity , Carcinogens, Environmental/toxicity , DNA Adducts , Epigenesis, Genetic/drug effects , Animals , Blotting, Western , DNA Methylation/drug effects , Genomic Instability/drug effects , Histones/metabolism , Inhalation Exposure , Kidney/drug effects , Kidney/metabolism , Kidney/pathology , Liver/drug effects , Liver/metabolism , Liver/pathology , Lung/drug effects , Lung/metabolism , Lung/pathology , Male , Mice, Inbred C57BL
19.
Toxicol Sci ; 139(2): 371-80, 2014 Jun.
Article in English | MEDLINE | ID: mdl-24614236

ABSTRACT

The presence of furan in common cooked foods along with evidence from experimental studies that lifetime exposure to furan causes liver tumors in rats and mice has caused concern to regulatory public health agencies worldwide; however, the mechanisms of the furan-induced hepatocarcinogenicity remain unclear. The goal of the present study was to investigate whether or not long-term exposure to furan causes epigenetic alterations in rat liver. Treating of male Fisher 344 rats by gavage 5 days per week with 0, 0.92, 2.0, or 4.4 mg furan/kg body weight (bw)/day resulted in dose- and time-dependent epigenetic changes consisting of alterations in DNA methylation and histone lysine methylation and acetylation, altered expression of chromatin modifying genes, and gene-specific methylation. Specifically, exposure to furan at doses 0.92, 2.0, or 4.4 mg furan/kg bw/day caused global DNA demethylation after 360 days of treatment. There was also a sustained decrease in the levels of histone H3 lysine 9 and H4 lysine 20 trimethylation after 180 and 360 days of furan exposure, and a marked reduction of histone H3 lysine 9 and H3 lysine 56 acetylation after 360 days at 4.4 mg/kg bw/day. These histone modification changes were accompanied by a reduced expression of Suv39h1, Prdm2, and Suv4-20h2 histone methyltransferases and Ep300 and Kat2a histone acetyltransferases. Additionally, furan at 2.0 and 4.4 mg/kg bw/day induced hypermethylation-dependent down-regulation of the Rassf1a gene in the livers after 180 and 360 days. These findings indicate possible involvement of dose- and time-dependent epigenetic modifications in the furan hepatotoxicity and carcinogenicity.


Subject(s)
DNA Methylation/drug effects , Environmental Pollutants/toxicity , Epigenesis, Genetic/drug effects , Furans/toxicity , Liver/drug effects , Animals , DNA Methylation/genetics , Dose-Response Relationship, Drug , Histone-Lysine N-Methyltransferase/genetics , Liver/metabolism , Male , Rats, Inbred F344 , Time Factors
20.
PLoS Negl Trop Dis ; 7(7): e2282, 2013.
Article in English | MEDLINE | ID: mdl-23875032

ABSTRACT

BACKGROUND: L. tropica can cause both cutaneous and visceral leishmaniasis in humans. Although the L. tropica-induced cutaneous disease has been long known, its potential to visceralize in humans was recognized only recently. As nothing is known about the genetics of host responses to this infection and their clinical impact, we developed an informative animal model. We described previously that the recombinant congenic strain CcS-16 carrying 12.5% genes from the resistant parental strain STS/A and 87.5% genes from the susceptible strain BALB/c is more susceptible to L. tropica than BALB/c. We used these strains to map and functionally characterize the gene-loci regulating the immune responses and pathology. METHODS: We analyzed genetics of response to L. tropica in infected F2 hybrids between BALB/c×CcS-16. CcS-16 strain carries STS-derived segments on nine chromosomes. We genotyped these segments in the F2 hybrid mice and tested their linkage with pathological changes and systemic immune responses. PRINCIPAL FINDINGS: We mapped 8 Ltr (Leishmania tropica response) loci. Four loci (Ltr2, Ltr3, Ltr6 and Ltr8) exhibit independent responses to L. tropica, while Ltr1, Ltr4, Ltr5 and Ltr7 were detected only in gene-gene interactions with other Ltr loci. Ltr3 exhibits the recently discovered phenomenon of transgenerational parental effect on parasite numbers in spleen. The most precise mapping (4.07 Mb) was achieved for Ltr1 (chr.2), which controls parasite numbers in lymph nodes. Five Ltr loci co-localize with loci controlling susceptibility to L. major, three are likely L. tropica specific. Individual Ltr loci affect different subsets of responses, exhibit organ specific effects and a separate control of parasite load and organ pathology. CONCLUSION: We present the first identification of genetic loci controlling susceptibility to L. tropica. The different combinations of alleles controlling various symptoms of the disease likely co-determine different manifestations of disease induced by the same pathogen in individual mice.


Subject(s)
Chromosome Mapping , Disease Susceptibility , Host-Pathogen Interactions , Leishmaniasis, Cutaneous/genetics , Animals , Disease Models, Animal , Female , Genetic Loci , Mice
SELECTION OF CITATIONS
SEARCH DETAIL
...