Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 20
Filter
Add more filters










Publication year range
1.
J Biol Phys ; 47(4): 371-386, 2021 12.
Article in English | MEDLINE | ID: mdl-34698957

ABSTRACT

SAM-I riboswitches regulate gene expression through transcription termination upon binding a S-adenosyl-L-methionine (SAM) ligand. In previous work, we characterized the conformational energy landscape of the full-length Bacillus subtilis yitJ SAM-I riboswitch as a function of Mg2+ and SAM ligand concentrations. Here, we have extended this work with measurements on a structurally similar ligand, S-adenosyl-L-homocysteine (SAH), which has, however, a much lower binding affinity. Using single-molecule Förster resonance energy transfer (smFRET) microscopy and hidden Markov modeling (HMM) analysis, we identified major conformations and determined their fractional populations and dynamics. At high Mg2+ concentration, FRET analysis yielded four distinct conformations, which we assigned to two terminator and two antiterminator states. In the same solvent, but with SAM added at saturating concentrations, four states persisted, although their populations, lifetimes and interconversion dynamics changed. In the presence of SAH instead of SAM, HMM revealed again four well-populated states and, in addition, a weakly populated 'hub' state that appears to mediate conformational transitions between three of the other states. Our data show pronounced and specific effects of the SAM and SAH ligands on the RNA conformational energy landscape. Interestingly, both SAM and SAH shifted the fractional populations toward terminator folds, but only gradually, so the effect cannot explain the switching action. Instead, we propose that the noticeably accelerated dynamics of interconversion between terminator and antiterminator states upon SAM binding may be essential for control of transcription.


Subject(s)
Riboswitch , Bacillus subtilis/genetics , Ligands , Nucleic Acid Conformation , S-Adenosylmethionine
2.
Mol Syst Biol ; 17(9): e10272, 2021 09.
Article in English | MEDLINE | ID: mdl-34569155

ABSTRACT

It is essential for cells to control which genes are transcribed into RNA. In eukaryotes, two major control points are recruitment of RNA polymerase II (Pol II) into a paused state, and subsequent pause release toward transcription. Pol II recruitment and pause release occur in association with macromolecular clusters, which were proposed to be formed by a liquid-liquid phase separation mechanism. How such a phase separation mechanism relates to the interaction of Pol II with DNA during recruitment and transcription, however, remains poorly understood. Here, we use live and super-resolution microscopy in zebrafish embryos to reveal Pol II clusters with a large variety of shapes, which can be explained by a theoretical model in which regulatory chromatin regions provide surfaces for liquid-phase condensation at concentrations that are too low for canonical liquid-liquid phase separation. Model simulations and chemical perturbation experiments indicate that recruited Pol II contributes to the formation of these surface-associated condensates, whereas elongating Pol II is excluded from these condensates and thereby drives their unfolding.


Subject(s)
Chromatin , RNA Polymerase II , Animals , Chromatin/genetics , RNA , RNA Polymerase II/genetics , RNA Polymerase II/metabolism , Transcription, Genetic , Zebrafish/genetics , Zebrafish/metabolism
3.
Elife ; 92020 09 24.
Article in English | MEDLINE | ID: mdl-32969791

ABSTRACT

The glucose-sensing Mondo pathway regulates expression of metabolic genes in mammals. Here, we characterized its function in the zebrafish and revealed an unexpected role of this pathway in vertebrate embryonic development. We showed that knockdown of mondoa impaired the early morphogenetic movement of epiboly in zebrafish embryos and caused microtubule defects. Expression of genes in the terpenoid backbone and sterol biosynthesis pathways upstream of pregnenolone synthesis was coordinately downregulated in these embryos, including the most downregulated gene nsdhl. Loss of Nsdhl function likewise impaired epiboly, similar to MondoA loss of function. Both epiboly and microtubule defects were partially restored by pregnenolone treatment. Maternal-zygotic mutants of mondoa showed perturbed epiboly with low penetrance and compensatory changes in the expression of terpenoid/sterol/steroid metabolism genes. Collectively, our results show a novel role for MondoA in the regulation of early vertebrate development, connecting glucose, cholesterol and steroid hormone metabolism with early embryonic cell movements.


In most animals, a protein called MondoA closely monitors the amount of glucose in the body, as this type of sugar is the fuel required for many life processes. Glucose levels also act as a proxy for the availability of other important nutrients. Once MondoA has detected glucose molecules, it turns genetic programmes on and off depending on the needs of the cell. So far, these mechanisms have mainly been studied in adult cells. However, recent studies have shown that proteins that monitor nutrient availability, and their associated pathways, can control early development. MondoA had not been studied in this context before, so Weger et al. decided to investigate its role in embryonic development. The experiments used embryos from zebrafish, a small freshwater fish whose early development is easily monitored and manipulated in the laboratory. Inhibiting production of the MondoA protein in zebrafish embryos prevented them from maturing any further, stopping their development at an early key stage. This block was caused by defects in microtubules, the tubular molecules that act like a microscopic skeleton to provide structural support for cells and guide transport of cell components. In addition, the pathway involved in the production of cholesterol and cholesterol-based hormones was far less active in embryos lacking MondoA. Treating MondoA-deficient embryos with one of these hormones corrected the microtubule defects and let the embryos progress to more advanced stages of development. These results reveal that, during development, the glucose sensor MondoA also controls pathways involved in the creation of cholesterol and associated hormones. These new insights into the metabolic regulation of development could help to understand certain human conditions; for example, certain patients with defective cholesterol pathway genes also show developmental perturbations. In addition, the work highlights a biological link between cholesterol production and cellular responses to glucose, which Weger et al. hope could one day help to identify new cholesterol-lowering drugs.


Subject(s)
Basic Helix-Loop-Helix Leucine Zipper Transcription Factors , Cholesterol/metabolism , Gene Expression Regulation, Developmental/genetics , Zebrafish Proteins , Animals , Basic Helix-Loop-Helix Leucine Zipper Transcription Factors/genetics , Basic Helix-Loop-Helix Leucine Zipper Transcription Factors/metabolism , Cholesterol/genetics , Embryo, Nonmammalian , Gastrulation/genetics , Gene Knockdown Techniques , Zebrafish/embryology , Zebrafish Proteins/genetics , Zebrafish Proteins/metabolism
4.
PLoS Genet ; 16(6): e1008774, 2020 06.
Article in English | MEDLINE | ID: mdl-32555736

ABSTRACT

Cranial neural crest (NC) contributes to the developing vertebrate eye. By multidimensional, quantitative imaging, we traced the origin of the ocular NC cells to two distinct NC populations that differ in the maintenance of sox10 expression, Wnt signalling, origin, route, mode and destination of migration. The first NC population migrates to the proximal and the second NC cell group populates the distal (anterior) part of the eye. By analysing zebrafish pax6a/b compound mutants presenting anterior segment dysgenesis, we demonstrate that Pax6a/b guide the two NC populations to distinct proximodistal locations. We further provide evidence that the lens whose formation is pax6a/b-dependent and lens-derived TGFß signals contribute to the building of the anterior segment. Taken together, our results reveal multiple roles of Pax6a/b in the control of NC cells during development of the anterior segment.


Subject(s)
Anterior Eye Segment/metabolism , Neural Crest/metabolism , Neurogenesis , PAX6 Transcription Factor/metabolism , Zebrafish Proteins/metabolism , Animals , Anterior Eye Segment/cytology , Anterior Eye Segment/embryology , Cell Movement , Mutation , Neural Crest/cytology , Neural Crest/embryology , Neurons/cytology , Neurons/metabolism , PAX6 Transcription Factor/genetics , Signal Transduction , Transforming Growth Factor beta/metabolism , Zebrafish , Zebrafish Proteins/genetics
5.
Chem Sci ; 9(4): 1006-1013, 2018 Jan 28.
Article in English | MEDLINE | ID: mdl-29675147

ABSTRACT

We have established a simple one-step synthesis of single-enzyme nanogels (SENs), i.e., nanobiocatalysts consisting of an enzyme molecule embedded in a hydrophilic, polymeric crosslinked nanostructure, as a most attractive approach to enhance the stability of enzymes. In contrast to earlier protocols, we demonstrate here that the addition of a small amount of sucrose makes the nanogel formation equally effective as earlier two-step protocols requiring enzyme pre-modification. This provides the dual advantage of skipping a synthetic step and preserving the surface chemistry of the enzymes, hence their native structure. Enzymes encapsulated in this way exhibit a high catalytic activity, similar to that of the free enzymes, in a markedly widened pH range. With our method, the thickness of the hydrogel layer can be finely tuned by careful adjustment of reaction parameters. This is most important because the shell thickness strongly affects both enzyme activity and stability, as we observe for a wide selection of proteins. Finally, a single-molecule analysis by means of two-color confocal fluorescence coincidence analysis confirms that our encapsulation method is highly efficient and suppresses the occurrence of nanoparticles lacking an enzyme molecule. The proposed method is therefore highly attractive for biocatalysis applications, ensuring a high activity and stability of the enzymes.

6.
J Chem Phys ; 148(12): 123324, 2018 Mar 28.
Article in English | MEDLINE | ID: mdl-29604896

ABSTRACT

RNA (ribonucleic acid) molecules are highly flexible biopolymers fluctuating at physiological temperatures among many different conformations that are represented by minima in a hierarchical conformational free energy landscape. Here we have employed single-molecule FRET (smFRET) to explore the energy landscape of the B. subtilis yitJ SAM-I riboswitch (RS). In this small RNA molecule, specific binding of an S-adenosyl-L-methionine (SAM) ligand in the aptamer domain regulates gene expression by inducing structural changes in another domain, the expression platform, causing transcription termination by the RNA polymerase. We have measured smFRET histograms over wide ranges of Mg2+ concentration for three RS variants that were specifically labeled with fluorescent dyes on different sites. In the analysis, different conformations are associated with discrete Gaussian model distributions, which are typically fairly broad on the FRET efficiency scale and thus can be extremely challenging to unravel due to their mutual overlap. Our earlier work on two SAM-I RS variants revealed four major conformations. By introducing a global fitting procedure which models both the Mg2+ concentration dependencies of the fractional populations and the average FRET efficiencies of the individual FRET distributions according to Mg2+ binding isotherms, we were able to consistently describe the histogram data of both variants at all studied Mg2+ concentrations. With the third FRET-labeled variant, however, we found significant deviations when applying the four-state model to the data. This can arise because the different FRET labeling of the new variant allows two states to be distinguished that were previously not separable due to overlap. Indeed, the resulting five-state model presented here consistently describes the smFRET histograms of all three variants as well as their variations with Mg2+ concentration. We also performed a triangulation of the donor position for two of the constructs to explore how the expression platform is oriented with respect to the aptamer.


Subject(s)
Models, Biological , Riboswitch , S-Adenosylmethionine/chemistry , Fluorescence Resonance Energy Transfer/methods , Magnesium/chemistry
7.
Nat Chem Biol ; 13(11): 1172-1178, 2017 Nov.
Article in English | MEDLINE | ID: mdl-28920931

ABSTRACT

S-adenosyl-L-methionine (SAM) ligand binding induces major structural changes in SAM-I riboswitches, through which gene expression is regulated via transcription termination. Little is known about the conformations and motions governing the function of the full-length Bacillus subtilis yitJ SAM-I riboswitch. Therefore, we have explored its conformational energy landscape as a function of Mg2+ and SAM ligand concentrations using single-molecule Förster resonance energy transfer (smFRET) microscopy and hidden Markov modeling analysis. We resolved four conformational states both in the presence and the absence of SAM and determined their Mg2+-dependent fractional populations and conformational dynamics, including state lifetimes, interconversion rate coefficients and equilibration timescales. Riboswitches with terminator and antiterminator folds coexist, and SAM binding only gradually shifts the populations toward terminator states. We observed a pronounced acceleration of conformational transitions upon SAM binding, which may be crucial for off-switching during the brief decision window before expression of the downstream gene.


Subject(s)
Bacillus subtilis/metabolism , Fluorescence Resonance Energy Transfer/methods , Nucleic Acid Conformation , RNA, Bacterial/chemistry , Riboswitch , Bacillus subtilis/chemistry , Ligands , Magnesium/chemistry , Magnesium/metabolism , Models, Molecular , S-Adenosylmethionine/metabolism
8.
Angew Chem Int Ed Engl ; 56(38): 11628-11633, 2017 09 11.
Article in English | MEDLINE | ID: mdl-28661566

ABSTRACT

Green-to-red photoconvertible fluorescent proteins (pcFPs) are powerful tools for super-resolution localization microscopy and protein tagging. Recently, they have been found to undergo efficient photoconversion not only by the traditional 400-nm illumination but also by an alternative method termed primed conversion, employing dual wavelength illumination with blue and far-red/near-infrared light. Primed conversion has been reported only for Dendra2 and its mechanism has remained elusive. Here, we uncover the molecular mechanism of primed conversion by reporting the intermediate "primed" state to be a triplet dark state formed by intersystem crossing. We show that formation of this state can be influenced by the introduction of serine or threonine at sequence position 69 (Eos notation) and use this knowledge to create "pr"- (for primed convertible) variants of most known green-to-red pcFPs.


Subject(s)
Color , Luminescent Proteins/chemistry , Protein Engineering , Microscopy, Fluorescence , Photochemical Processes
9.
J Phys Chem B ; 120(4): 641-9, 2016 Feb 04.
Article in English | MEDLINE | ID: mdl-26747376

ABSTRACT

We have studied the folding kinetics of the core intermediate (I) state of RNase H by using a combination of single-molecule FRET (smFRET) and hidden Markov model analysis. To measure fast dynamics in thermal equilibrium as a function of the concentration of the denaturant GdmCl, a special FRET labeled variant, RNase H 60-113, which is sensitive to folding of the protein core, was immobilized on PEGylated surfaces. Conformational transitions between the unfolded (U) state and the I state could be described by a two-state model within our experimental time resolution, with millisecond mean residence times. The I state population was always a minority species in the entire accessible range of denaturant concentrations. By introducing the measured free energy differences between the U and I states as constraints in global fits of the GdmCl dependence of FRET histograms of a differently labeled RNase H variant (RNase H 3-135), we were able to reveal the free energy differences and, thus, population ratios of all three macroscopic state ensembles, U, I and F (folded state) as a function of denaturant concentration.


Subject(s)
Protein Folding , Ribonuclease H/chemistry , Fluorescence Resonance Energy Transfer
10.
J Phys Chem B ; 119(22): 6611-9, 2015 Jun 04.
Article in English | MEDLINE | ID: mdl-25978145

ABSTRACT

Fluorescence resonance energy transfer (FRET) is a superb technique for measuring conformational changes of proteins on the single molecule level (smFRET) in real time. It requires introducing a donor and acceptor fluorophore pair at specific locations on the protein molecule of interest, which has often been a challenging task. By using two different self-labeling chemical tags, such as Halo-, TMP-, SNAP- and CLIP-tags, orthogonal labeling may be achieved rapidly and reliably. However, these comparatively large tags add extra distance and flexibility between the desired labeling location on the protein and the fluorophore position, which may affect the results. To systematically characterize chemical tags for smFRET measurement applications, we took the SNAP-tag/CLIP-tag combination as a model system and fused a flexible unstructured peptide, rigid polyproline peptides of various lengths, and the calcium sensor protein calmodulin between the tags. We could reliably identify length variations as small as four residues in the polyproline peptide. In the calmodulin system, the added length introduced by these tags was even beneficial for revealing subtle conformational changes upon variation of the buffer conditions. This approach opens up new possibilities for studying conformational dynamics, especially in large protein systems that are difficult to specifically conjugate with fluorophores.


Subject(s)
Fluorescence Resonance Energy Transfer/methods , Fluorescent Dyes/chemistry , Calmodulin/chemistry , Peptides/chemistry , Protein Conformation
11.
J Biol Chem ; 290(28): 17056-72, 2015 Jul 10.
Article in English | MEDLINE | ID: mdl-25903139

ABSTRACT

The Rho GTPase Rac is crucially involved in controlling multiple B cell functions, including those regulated by the B cell receptor (BCR) through increased cytosolic Ca(2+). The underlying molecular mechanisms and their relevance to the functions of intact B cells have thus far remained unknown. We have previously shown that the activity of phospholipase Cγ2 (PLCγ2), a key constituent of the BCR signalosome, is stimulated by activated Rac through direct protein-protein interaction. Here, we use a Rac-resistant mutant of PLCγ2 to functionally reconstitute cultured PLCγ2-deficient DT40 B cells and to examine the effects of the Rac-PLCγ2 interaction on BCR-mediated changes of intracellular Ca(2+) and regulation of Ca(2+)-regulated and nuclear-factor-of-activated-T-cell-regulated gene transcription at the level of single, intact B cells. The results show that the functional Rac-PLCγ2 interaction causes marked increases in the following: (i) sensitivity of B cells to BCR ligation; (ii) BCR-mediated Ca(2+) release from intracellular stores; (iii) Ca(2+) entry from the extracellular compartment; and (iv) nuclear translocation of the Ca(2+)-regulated nuclear factor of activated T cells. Hence, Rac-mediated stimulation of PLCγ2 activity serves to amplify B cell receptor-induced Ca(2+) signaling.


Subject(s)
Calcium Signaling/physiology , Phospholipase C gamma/metabolism , Receptors, Antigen, B-Cell/metabolism , rac GTP-Binding Proteins/metabolism , Active Transport, Cell Nucleus , Amino Acid Substitution , Animals , Avian Proteins/chemistry , Avian Proteins/genetics , Avian Proteins/metabolism , B-Lymphocytes/cytology , B-Lymphocytes/immunology , B-Lymphocytes/metabolism , Cell Line , Chickens , Humans , Mice , Models, Molecular , Mutagenesis, Site-Directed , NFATC Transcription Factors/metabolism , Phospholipase C gamma/chemistry , Phospholipase C gamma/genetics , Protein Conformation , Recombinant Proteins/chemistry , Recombinant Proteins/genetics , Recombinant Proteins/metabolism , rac GTP-Binding Proteins/chemistry , rac GTP-Binding Proteins/genetics
12.
Chemistry ; 21(15): 5864-71, 2015 Apr 07.
Article in English | MEDLINE | ID: mdl-25753253

ABSTRACT

The Diels-Alder reaction is one of the most important C-C bond-forming reactions in organic chemistry, and much effort has been devoted to controlling its enantio- and diastereoselectivity. The Diels-Alderase ribozyme (DAse) catalyses the reaction between anthracene dienes and maleimide dienophiles with multiple-turnover, stereoselectivity, and up to 1100-fold rate acceleration. Here, a new generation of anthracene-BODIPY-based fluorescent probes was developed to monitor catalysis by the DAse. The brightness of these probes increases up to 93-fold upon reaction with N-pentylmaleimide (NPM), making these useful tools for investigating the stereochemistry of the ribozyme-catalysed reaction. With these probes, we observed that the DAse catalyses the reaction with >91% de and >99% ee. The stereochemistry of the major product was determined unambiguously by rotating-frame nuclear Overhauser NMR spectroscopy (ROESY-NMR) and is in agreement with crystallographic structure information. The pronounced fluorescence change of the probes furthermore allowed a complete kinetic analysis, which revealed an ordered bi uni type reaction mechanism, with the dienophile binding first.


Subject(s)
Anthracenes/metabolism , Boron Compounds/metabolism , Fluorescent Dyes/metabolism , RNA, Catalytic/metabolism , Anthracenes/chemical synthesis , Anthracenes/chemistry , Boron Compounds/chemical synthesis , Boron Compounds/chemistry , Catalysis , Cycloaddition Reaction , Fluorescent Dyes/chemical synthesis , Fluorescent Dyes/chemistry , Models, Molecular , Molecular Probes/chemical synthesis , Molecular Probes/chemistry , Molecular Probes/metabolism , Stereoisomerism , Substrate Specificity
13.
J Phys Chem B ; 117(42): 12800-6, 2013 Oct 24.
Article in English | MEDLINE | ID: mdl-23621553

ABSTRACT

Enzymology at the single-molecule level by using fluorescence resonance energy transfer (smFRET) offers unprecedented insight into mechanistic aspects of catalytic reactions. Implementing spatiotemporal control of the reaction by using an external trigger is highly valuable in these challenging experiments. Here, we have incorporated a light-cleavable caging moiety into specific nucleotides of the Diels-Alderase (DAse) ribozyme. In this way, the folding energy landscape was significantly perturbed, and the catalytic activity was essentially suppressed. A careful smFRET efficiency histogram analysis at various Mg(2+) ion concentrations revealed an additional intermediate state that is not observed for the unmodified DAse ribozyme. We also observed that only a fraction of DAse molecules returns to the native state upon cleavage of the caged group by UV light. These constructs are attractive model RNA systems for further real-time single-molecule observation of the coupling between conformational changes and catalytic activity.


Subject(s)
Fluorescence Resonance Energy Transfer , Nucleotides/chemistry , RNA, Catalytic/chemistry , Anions/chemistry , Biocatalysis , Magnesium/chemistry , Mutation , Nucleic Acid Conformation , RNA Folding/radiation effects , RNA, Catalytic/genetics , RNA, Catalytic/metabolism , Thermodynamics , Ultraviolet Rays
14.
Chem Biol ; 18(7): 928-36, 2011 Jul 29.
Article in English | MEDLINE | ID: mdl-21802013

ABSTRACT

Using a combination of advanced RNA synthesis techniques and single molecule spectroscopy, the deconvolution of individual contributions of posttranscriptional modifications to the overall folding and stabilization of human mitochondrial tRNA(Lys) is described. An unexpected destabilizing effect of two pseudouridines on the native tRNA folding was evidenced. Furthermore, the presence of m(2)G10 alone does not facilitate the folding of tRNA(Lys), but a stabilization of the biologically functional cloverleaf shape in conjunction with the principal stabilizing component m(1)A9 exceeds the contribution of m(1)A alone. This constitutes an unprecedented cooperative effect of two nucleotide modifications in the context of a naturally occurring RNA, which may be of general importance for tRNA structure and help understanding several recently described decay pathways for hypomodified tRNAs.


Subject(s)
Fluorescence Resonance Energy Transfer/methods , RNA, Transfer, Lys/chemistry , Base Sequence , Coloring Agents/chemistry , Humans , Magnesium/chemistry , Mitochondria/chemistry , Models, Molecular , Molecular Sequence Data , Nucleic Acid Conformation , Organophosphorus Compounds/chemistry , Pseudouridine/chemistry , RNA Stability
15.
Biochemistry ; 50(15): 3107-15, 2011 Apr 19.
Article in English | MEDLINE | ID: mdl-21375355

ABSTRACT

The folding energy landscape of RNA is greatly affected by interactions between the RNA and counterions that neutralize the backbone negative charges and may also participate in tertiary contacts. Valence, size, coordination number, and electron shell structure can all contribute to the energetic stabilization of specific RNA conformations. Using single-molecule fluorescence resonance energy transfer (smFRET), we have examined the folding properties of the RNA transcript of human mitochondrial tRNA(Lys), which possesses two different folded states in addition to the unfolded one under conditions of thermodynamic equilibrium. We have quantitatively analyzed the degree of RNA tertiary structure stabilization for different types of cations based on a thermodynamic model that accounts for multiple conformational states and RNA-ion interactions within each state. We have observed that small monovalent ions stabilize the tRNA tertiary structure more efficiently than larger ones. More ions were found in close vicinity of compact RNA structures, independent of the type of ion. The largest conformation-dependent binding specificity of ions of the same charge was found for divalent ions, for which the ionic radii and coordination properties were responsible for shaping the folding free energy.


Subject(s)
Fluorescence Resonance Energy Transfer , RNA, Transfer, Lys/chemistry , RNA/chemistry , Cations/metabolism , Cations/pharmacology , Humans , Nucleic Acid Conformation/drug effects , RNA/metabolism , RNA Stability/drug effects , RNA, Messenger/chemistry , RNA, Mitochondrial , RNA, Transfer, Lys/metabolism , Thermodynamics
16.
J Am Chem Soc ; 132(8): 2646-54, 2010 Mar 03.
Article in English | MEDLINE | ID: mdl-20131767

ABSTRACT

Fluorescence spectroscopy is a powerful, extremely sensitive technique for the investigation of enzyme and ribozyme mechanisms. Herein, we describe the synthesis and characterization of water-soluble fluorescence probes for studying biocatalytic Diels-Alder reactions. These probes consist of anthracene and sulfonated BODIPY fluorophores fused by conjugated phenylacetylenyl bridges. Intact anthracene efficiently quenches BODIPY fluorescence, likely by photoinduced electron transfer. Upon destruction of the aromatic system by the Diels-Alder reaction, the fluorescence emission increases 20-fold. Binding in the catalytic pocket of a Diels-Alderase ribozyme yields a further approximately 2-fold increase in the fluorescence intensity of both the anthracene-BODIPY and the Diels-Alder-product-BODIPY probes. Therefore, a fluorescence-based distinction of free substrate, bound substrate, bound product, and free product is possible. With these all-in-one reporters, we monitored RNA-catalyzed Diels-Alder reactions under both single- and multiple-turnover conditions down to the nanomolar concentration range. Burst analysis at the single-molecule level revealed blinking of the dyads between an on state and an off state, presumably due to rotation around the phenylacetylenyl bridge. Binding to the ribozyme does not increase the intensity of the individual fluorescence bursts, but rather increases the average time spent in the on state. Variations in the quantum yields of the different probes correlate well with the degree of conjugation between anthracene and the phenylacetylenyl bridge.


Subject(s)
Anthracenes/chemistry , Boron Compounds/chemistry , Fluorescent Dyes/chemistry , Spectrometry, Fluorescence/methods , Anthracenes/chemical synthesis , Biocatalysis , Boron Compounds/chemical synthesis , Fluorescent Dyes/chemical synthesis , RNA, Catalytic/analysis , RNA, Catalytic/metabolism , Water/chemistry
17.
Biophys Rev ; 1(4): 161, 2009 Dec.
Article in English | MEDLINE | ID: mdl-28510027

ABSTRACT

Single-molecule fluorescence microscopy experiments on RNA molecules brought to light the highly complex dynamics of key biological processes, including RNA folding, catalysis of ribozymes, ligand sensing of riboswitches and aptamers, and protein synthesis in the ribosome. By using highly advanced biophysical spectroscopy techniques in combination with sophisticated biochemical synthesis approaches, molecular dynamics of individual RNA molecules can be observed in real time and under physiological conditions in unprecedented detail that cannot be achieved with bulk experiments. Here, we review recent advances in RNA folding and functional studies of RNA and RNA-protein complexes addressed by using single-molecule Förster (fluorescence) resonance energy transfer (smFRET) technique.

20.
Nucleic Acids Res ; 35(6): 2047-59, 2007.
Article in English | MEDLINE | ID: mdl-17344321

ABSTRACT

Here, we report a single-molecule fluorescence resonance energy transfer (FRET) study of a Diels-Alderase (DAse) ribozyme, a 49-mer RNA with true catalytic properties. The DAse ribozyme was labeled with Cy3 and Cy5 as a FRET pair of dyes to observe intramolecular folding, which is a prerequisite for its recognition and turnover of two organic substrate molecules. FRET efficiency histograms and kinetic data were taken on a large number of surface-immobilized ribozyme molecules as a function of the Mg(2+) concentration in the buffer solution. From these data, three separate states of the DAse ribozyme can be distinguished, the unfolded (U), intermediate (I) and folded (F) states. A thermodynamic model was developed to quantitatively analyze the dependence of these states on the Mg(2+) concentration. The FRET data also provide information on structural properties. The I state shows a strongly cooperative compaction with increasing Mg(2+) concentration that arises from association with several Mg(2+) ions. This transition is followed by a second Mg(2+)-dependent cooperative transition to the F state. The observation of conformational heterogeneity and continuous fluctuations between the I and F states on the approximately 100 ms timescale offers insight into the folding dynamics of this ribozyme.


Subject(s)
Magnesium/chemistry , RNA, Catalytic/chemistry , Cations, Divalent/chemistry , Fluorescence Resonance Energy Transfer , Models, Molecular , Nucleic Acid Conformation , Thermodynamics
SELECTION OF CITATIONS
SEARCH DETAIL
...