Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 25
Filter
Add more filters










Publication year range
2.
Nat Rev Mol Cell Biol ; 25(6): 464-487, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38308006

ABSTRACT

Our ability to edit genomes lags behind our capacity to sequence them, but the growing understanding of CRISPR biology and its application to genome, epigenome and transcriptome engineering is narrowing this gap. In this Review, we discuss recent developments of various CRISPR-based systems that can transiently or permanently modify the genome and the transcriptome. The discovery of further CRISPR enzymes and systems through functional metagenomics has meaningfully broadened the applicability of CRISPR-based editing. Engineered Cas variants offer diverse capabilities such as base editing, prime editing, gene insertion and gene regulation, thereby providing a panoply of tools for the scientific community. We highlight the strengths and weaknesses of current CRISPR tools, considering their efficiency, precision, specificity, reliance on cellular DNA repair mechanisms and their applications in both fundamental biology and therapeutics. Finally, we discuss ongoing clinical trials that illustrate the potential impact of CRISPR systems on human health.


Subject(s)
CRISPR-Cas Systems , Epigenome , Gene Editing , Transcriptome , Humans , Gene Editing/methods , CRISPR-Cas Systems/genetics , Epigenome/genetics , Animals , Transcriptome/genetics , Clustered Regularly Interspaced Short Palindromic Repeats/genetics , Genome/genetics
3.
Nature ; 627(8003): 389-398, 2024 Mar.
Article in English | MEDLINE | ID: mdl-38253266

ABSTRACT

The human blood system is maintained through the differentiation and massive amplification of a limited number of long-lived haematopoietic stem cells (HSCs)1. Perturbations to this process underlie diverse diseases, but the clonal contributions to human haematopoiesis and how this changes with age remain incompletely understood. Although recent insights have emerged from barcoding studies in model systems2-5, simultaneous detection of cell states and phylogenies from natural barcodes in humans remains challenging. Here we introduce an improved, single-cell lineage-tracing system based on deep detection of naturally occurring mitochondrial DNA mutations with simultaneous readout of transcriptional states and chromatin accessibility. We use this system to define the clonal architecture of HSCs and map the physiological state and output of clones. We uncover functional heterogeneity in HSC clones, which is stable over months and manifests as both differences in total HSC output and biases towards the production of different mature cell types. We also find that the diversity of HSC clones decreases markedly with age, leading to an oligoclonal structure with multiple distinct clonal expansions. Our study thus provides a clonally resolved and cell-state-aware atlas of human haematopoiesis at single-cell resolution, showing an unappreciated functional diversity of human HSC clones and, more broadly, paving the way for refined studies of clonal dynamics across a range of tissues in human health and disease.


Subject(s)
Cell Lineage , Hematopoiesis , Hematopoietic Stem Cells , Humans , Chromatin/genetics , Chromatin/metabolism , Clone Cells/classification , Clone Cells/cytology , Clone Cells/metabolism , DNA, Mitochondrial/genetics , Hematopoietic Stem Cells/classification , Hematopoietic Stem Cells/cytology , Hematopoietic Stem Cells/metabolism , Mutation , Single-Cell Analysis , Transcription, Genetic , Aging
5.
Nat Biotechnol ; 40(5): 731-740, 2022 05.
Article in English | MEDLINE | ID: mdl-34887556

ABSTRACT

The targeted deletion, replacement, integration or inversion of genomic sequences could be used to study or treat human genetic diseases, but existing methods typically require double-strand DNA breaks (DSBs) that lead to undesired consequences, including uncontrolled indel mixtures and chromosomal abnormalities. Here we describe twin prime editing (twinPE), a DSB-independent method that uses a prime editor protein and two prime editing guide RNAs (pegRNAs) for the programmable replacement or excision of DNA sequences at endogenous human genomic sites. The two pegRNAs template the synthesis of complementary DNA flaps on opposing strands of genomic DNA, which replace the endogenous DNA sequence between the prime-editor-induced nick sites. When combined with a site-specific serine recombinase, twinPE enabled targeted integration of gene-sized DNA plasmids (>5,000 bp) and targeted sequence inversions of 40 kb in human cells. TwinPE expands the capabilities of precision gene editing and might synergize with other tools for the correction or complementation of large or complex human pathogenic alleles.


Subject(s)
CRISPR-Cas Systems , Gene Editing , Base Sequence , Chromosome Inversion , DNA/genetics , Gene Editing/methods , Humans , RNA, Guide, Kinetoplastida/genetics
7.
Nat Biotechnol ; 39(11): 1414-1425, 2021 11.
Article in English | MEDLINE | ID: mdl-34183861

ABSTRACT

Programmable C•G-to-G•C base editors (CGBEs) have broad scientific and therapeutic potential, but their editing outcomes have proved difficult to predict and their editing efficiency and product purity are often low. We describe a suite of engineered CGBEs paired with machine learning models to enable efficient, high-purity C•G-to-G•C base editing. We performed a CRISPR interference (CRISPRi) screen targeting DNA repair genes to identify factors that affect C•G-to-G•C editing outcomes and used these insights to develop CGBEs with diverse editing profiles. We characterized ten promising CGBEs on a library of 10,638 genomically integrated target sites in mammalian cells and trained machine learning models that accurately predict the purity and yield of editing outcomes (R = 0.90) using these data. These CGBEs enable correction to the wild-type coding sequence of 546 disease-related transversion single-nucleotide variants (SNVs) with >90% precision (mean 96%) and up to 70% efficiency (mean 14%). Computational prediction of optimal CGBE-single-guide RNA pairs enables high-purity transversion base editing at over fourfold more target sites than achieved using any single CGBE variant.


Subject(s)
Clustered Regularly Interspaced Short Palindromic Repeats , Gene Editing , Animals , CRISPR-Cas Systems/genetics , Machine Learning , Mammals/genetics , RNA, Guide, Kinetoplastida/genetics
8.
Nature ; 595(7866): 295-302, 2021 07.
Article in English | MEDLINE | ID: mdl-34079130

ABSTRACT

Sickle cell disease (SCD) is caused by a mutation in the ß-globin gene HBB1. We used a custom adenine base editor (ABE8e-NRCH)2,3 to convert the SCD allele (HBBS) into Makassar ß-globin (HBBG), a non-pathogenic variant4,5. Ex vivo delivery of mRNA encoding the base editor with a targeting guide RNA into haematopoietic stem and progenitor cells (HSPCs) from patients with SCD resulted in 80% conversion of HBBS to HBBG. Sixteen weeks after transplantation of edited human HSPCs into immunodeficient mice, the frequency of HBBG was 68% and hypoxia-induced sickling of bone marrow reticulocytes had decreased fivefold, indicating durable gene editing. To assess the physiological effects of HBBS base editing, we delivered ABE8e-NRCH and guide RNA into HSPCs from a humanized SCD mouse6 and then transplanted these cells into irradiated mice. After sixteen weeks, Makassar ß-globin represented 79% of ß-globin protein in blood, and hypoxia-induced sickling was reduced threefold. Mice that received base-edited HSPCs showed near-normal haematological parameters and reduced splenic pathology compared to mice that received unedited cells. Secondary transplantation of edited bone marrow confirmed that the gene editing was durable in long-term haematopoietic stem cells and showed that HBBS-to-HBBG editing of 20% or more is sufficient for phenotypic rescue. Base editing of human HSPCs avoided the p53 activation and larger deletions that have been observed following Cas9 nuclease treatment. These findings point towards a one-time autologous treatment for SCD that eliminates pathogenic HBBS, generates benign HBBG, and minimizes the undesired consequences of double-strand DNA breaks.


Subject(s)
Adenine/metabolism , Anemia, Sickle Cell/genetics , Anemia, Sickle Cell/therapy , Gene Editing , Hematopoietic Stem Cell Transplantation , Hematopoietic Stem Cells/metabolism , beta-Globins/genetics , Animals , Antigens, CD34/metabolism , CRISPR-Associated Protein 9/metabolism , Disease Models, Animal , Female , Genetic Therapy , Genome, Human/genetics , Hematopoietic Stem Cells/cytology , Hematopoietic Stem Cells/pathology , Humans , Male , Mice
9.
Aging Cell ; 20(7): e13388, 2021 07.
Article in English | MEDLINE | ID: mdl-34086398

ABSTRACT

Hutchinson-Gilford progeria syndrome (HGPS) is a rare genetic disorder with features of accelerated aging. The majority of HGPS cases are caused by a de novo point mutation in the LMNA gene (c.1824C>T; p.G608G) resulting in progerin, a toxic lamin A protein variant. Children with HGPS typically die from coronary artery diseases or strokes at an average age of 14.6 years. Endothelial dysfunction is a known driver of cardiovascular pathogenesis; however, it is currently unknown how progerin antagonizes normal angiogenic function in HGPS. Here, we use human iPSC-derived endothelial cell (iPSC-EC) models to study angiogenesis in HGPS. We cultured normal and HGPS iPSC-ECs under both static and fluidic culture conditions. HGPS iPSC-ECs show reduced endothelial nitric oxide synthase (eNOS) expression and activity compared with normal controls and concomitant decreases in intracellular nitric oxide (NO) level, which result in deficits in capillary-like microvascular network formation. Furthermore, the expression of matrix metalloproteinase 9 (MMP-9) was reduced in HGPS iPSC-ECs, while the expression of tissue inhibitor metalloproteinases 1 and 2 (TIMP1 and TIMP2) was upregulated relative to healthy controls. Finally, we used an adenine base editor (ABE7.10max-VRQR) to correct the pathogenic c.1824C>T allele in HGPS iPSC-ECs. Remarkably, ABE7.10max-VRQR correction of the HGPS mutation significantly reduced progerin expression to a basal level, rescued nuclear blebbing, increased intracellular NO level, normalized the misregulated TIMPs, and restored angiogenic competence in HGPS iPSC-ECs. Together, these results provide molecular insights of endothelial dysfunction in HGPS and suggest that ABE could be a promising therapeutic approach for correcting HGPS-related cardiovascular phenotypes.


Subject(s)
Endothelial Cells/metabolism , Induced Pluripotent Stem Cells/metabolism , Progeria/genetics , Cellular Senescence , Down-Regulation , Humans , Progeria/pathology
10.
Cell ; 184(4): 1064-1080.e20, 2021 02 18.
Article in English | MEDLINE | ID: mdl-33606977

ABSTRACT

Understanding the functional consequences of single-nucleotide variants is critical to uncovering the genetic underpinnings of diseases, but technologies to characterize variants are limiting. Here, we leverage CRISPR-Cas9 cytosine base editors in pooled screens to scalably assay variants at endogenous loci in mammalian cells. We benchmark the performance of base editors in positive and negative selection screens, identifying known loss-of-function mutations in BRCA1 and BRCA2 with high precision. To demonstrate the utility of base editor screens to probe small molecule-protein interactions, we screen against BH3 mimetics and PARP inhibitors, identifying point mutations that confer drug sensitivity or resistance. We also create a library of single guide RNAs (sgRNAs) predicted to generate 52,034 ClinVar variants in 3,584 genes and conduct screens in the presence of cellular stressors, identifying loss-of-function variants in numerous DNA damage repair genes. We anticipate that this screening approach will be broadly useful to readily and scalably functionalize genetic variants.


Subject(s)
Gene Editing , Genetic Variation , High-Throughput Nucleotide Sequencing , Alleles , BRCA1 Protein/genetics , BRCA2 Protein/genetics , Base Sequence , Catalytic Domain , Cell Line, Tumor , Humans , Loss of Function Mutation , Mutagenesis/genetics , Myeloid Cell Leukemia Sequence 1 Protein/genetics , Point Mutation/genetics , Poly(ADP-ribose) Polymerases/chemistry , Poly(ADP-ribose) Polymerases/genetics , Reproducibility of Results , Selection, Genetic , bcl-X Protein/genetics
11.
Nature ; 589(7843): 608-614, 2021 01.
Article in English | MEDLINE | ID: mdl-33408413

ABSTRACT

Hutchinson-Gilford progeria syndrome (HGPS or progeria) is typically caused by a dominant-negative C•G-to-T•A mutation (c.1824 C>T; p.G608G) in LMNA, the gene that encodes nuclear lamin A. This mutation causes RNA mis-splicing that produces progerin, a toxic protein that induces rapid ageing and shortens the lifespan of children with progeria to approximately 14 years1-4. Adenine base editors (ABEs) convert targeted A•T base pairs to G•C base pairs with minimal by-products and without requiring double-strand DNA breaks or donor DNA templates5,6. Here we describe the use of an ABE to directly correct the pathogenic HGPS mutation in cultured fibroblasts derived from children with progeria and in a mouse model of HGPS. Lentiviral delivery of the ABE to fibroblasts from children with HGPS resulted in 87-91% correction of the pathogenic allele, mitigation of RNA mis-splicing, reduced levels of progerin and correction of nuclear abnormalities. Unbiased off-target DNA and RNA editing analysis did not detect off-target editing in treated patient-derived fibroblasts. In transgenic mice that are homozygous for the human LMNA c.1824 C>T allele, a single retro-orbital injection of adeno-associated virus 9 (AAV9) encoding the ABE resulted in substantial, durable correction of the pathogenic mutation (around 20-60% across various organs six months after injection), restoration of normal RNA splicing and reduction of progerin protein levels. In vivo base editing rescued the vascular pathology of the mice, preserving vascular smooth muscle cell counts and preventing adventitial fibrosis. A single injection of ABE-expressing AAV9 at postnatal day 14 improved vitality and greatly extended the median lifespan of the mice from 215 to 510 days. These findings demonstrate the potential of in vivo base editing as a possible treatment for HGPS and other genetic diseases by directly correcting their root cause.


Subject(s)
Adenine/metabolism , Gene Editing/methods , Mutation , Progeria/genetics , Progeria/therapy , Alleles , Alternative Splicing , Animals , Aorta/pathology , Base Pairing , Child , DNA/genetics , Disease Models, Animal , Female , Fibroblasts/metabolism , Humans , Lamin Type A/chemistry , Lamin Type A/genetics , Lamin Type A/metabolism , Longevity , Male , Mice , Mice, Transgenic , Mutant Proteins/chemistry , Mutant Proteins/genetics , Mutant Proteins/metabolism , Progeria/pathology , RNA/genetics
12.
Nat Biotechnol ; 38(7): 824-844, 2020 07.
Article in English | MEDLINE | ID: mdl-32572269

ABSTRACT

The development of new CRISPR-Cas genome editing tools continues to drive major advances in the life sciences. Four classes of CRISPR-Cas-derived genome editing agents-nucleases, base editors, transposases/recombinases and prime editors-are currently available for modifying genomes in experimental systems. Some of these agents have also moved rapidly into the clinic. Each tool comes with its own capabilities and limitations, and major efforts have broadened their editing capabilities, expanded their targeting scope and improved editing specificity. We analyze key considerations when choosing genome editing agents and identify opportunities for future improvements and applications in basic research and therapeutics.


Subject(s)
CRISPR-Cas Systems/genetics , Gene Editing , Genome/genetics , DNA Breaks, Double-Stranded , Endonucleases/genetics , Gene Editing/methods , Humans , Recombinases/genetics , Transposases/genetics
14.
Nat Biotechnol ; 38(7): 883-891, 2020 07.
Article in English | MEDLINE | ID: mdl-32433547

ABSTRACT

Applications of adenine base editors (ABEs) have been constrained by the limited compatibility of the deoxyadenosine deaminase component with Cas homologs other than SpCas9. We evolved the deaminase component of ABE7.10 using phage-assisted non-continuous and continuous evolution (PANCE and PACE), which resulted in ABE8e. ABE8e contains eight additional mutations that increase activity (kapp) 590-fold compared with that of ABE7.10. ABE8e offers substantially improved editing efficiencies when paired with a variety of Cas9 or Cas12 homologs. ABE8e is more processive than ABE7.10, which could benefit screening, disruption of regulatory regions and multiplex base editing applications. A modest increase in Cas9-dependent and -independent DNA off-target editing, and in transcriptome-wide RNA off-target editing can be ameliorated by the introduction of an additional mutation in the TadA-8e domain. Finally, we show that ABE8e can efficiently install natural mutations that upregulate fetal hemoglobin expression in the BCL11A enhancer or in the the HBG promoter in human cells, targets that were poorly edited with ABE7.10. ABE8e augments the effectiveness and applicability of adenine base editing.


Subject(s)
Adenine/metabolism , CRISPR-Cas Systems/genetics , DNA/genetics , RNA/genetics , Adenosine Deaminase/genetics , Bacteriophages/genetics , Gene Editing , HEK293 Cells , Humans , Mutagenesis/genetics , Mutation/genetics
15.
Nat Biomed Eng ; 4(1): 97-110, 2020 01.
Article in English | MEDLINE | ID: mdl-31937940

ABSTRACT

The success of base editors for the study and treatment of genetic diseases depends on the ability to deliver them in vivo to the relevant cell types. Delivery via adeno-associated viruses (AAVs) is limited by AAV packaging capacity, which precludes the use of full-length base editors. Here, we report the application of dual AAVs for the delivery of split cytosine and adenine base editors that are then reconstituted by trans-splicing inteins. Optimized dual AAVs enable in vivo base editing at therapeutically relevant efficiencies and dosages in the mouse brain (up to 59% of unsorted cortical tissue), liver (38%), retina (38%), heart (20%) and skeletal muscle (9%). We also show that base editing corrects, in mouse brain tissue, a mutation that causes Niemann-Pick disease type C (a neurodegenerative ataxia), slowing down neurodegeneration and increasing lifespan. The optimized delivery vectors should facilitate the efficient introduction of targeted point mutations into multiple tissues of therapeutic interest.


Subject(s)
Adenine/metabolism , Cytosine/metabolism , Dependovirus/physiology , Gene Editing/methods , Animals , Brain/metabolism , Genetic Vectors/administration & dosage , HEK293 Cells , Humans , Liver/metabolism , Mice, Inbred C57BL , Muscle, Skeletal/metabolism , Myocardium/metabolism , Retina/metabolism
16.
Nat Biomed Eng ; 4(1): 125-130, 2020 01.
Article in English | MEDLINE | ID: mdl-31740768

ABSTRACT

In contrast to traditional CRISPR-Cas9 homology-directed repair, base editing can correct point mutations without supplying a DNA-repair template. Here we show in a mouse model of tyrosinaemia that hydrodynamic tail-vein injection of plasmid DNA encoding the adenine base editor (ABE) and a single-guide RNA (sgRNA) can correct an A>G splice-site mutation. ABE treatment partially restored splicing, generated fumarylacetoacetate hydrolase (FAH)-positive hepatocytes in the liver, and rescued weight loss in mice. We also generated FAH+ hepatocytes in the liver via lipid-nanoparticle-mediated delivery of a chemically modified sgRNA and an mRNA of a codon-optimized base editor that displayed higher base-editing efficiency than the standard ABEs. Our findings suggest that adenine base editing can be used for the correction of genetic diseases in adult animals.


Subject(s)
Adenine/metabolism , Gene Editing/methods , Tyrosinemias/genetics , Animals , Disease Models, Animal , Female , HEK293 Cells , Hepatocytes/metabolism , Humans , Hydrolases/genetics , Liver/metabolism , Point Mutation , RNA/administration & dosage
17.
Nature ; 576(7785): 149-157, 2019 12.
Article in English | MEDLINE | ID: mdl-31634902

ABSTRACT

Most genetic variants that contribute to disease1 are challenging to correct efficiently and without excess byproducts2-5. Here we describe prime editing, a versatile and precise genome editing method that directly writes new genetic information into a specified DNA site using a catalytically impaired Cas9 endonuclease fused to an engineered reverse transcriptase, programmed with a prime editing guide RNA (pegRNA) that both specifies the target site and encodes the desired edit. We performed more than 175 edits in human cells, including targeted insertions, deletions, and all 12 types of point mutation, without requiring double-strand breaks or donor DNA templates. We used prime editing in human cells to correct, efficiently and with few byproducts, the primary genetic causes of sickle cell disease (requiring a transversion in HBB) and Tay-Sachs disease (requiring a deletion in HEXA); to install a protective transversion in PRNP; and to insert various tags and epitopes precisely into target loci. Four human cell lines and primary post-mitotic mouse cortical neurons support prime editing with varying efficiencies. Prime editing shows higher or similar efficiency and fewer byproducts than homology-directed repair, has complementary strengths and weaknesses compared to base editing, and induces much lower off-target editing than Cas9 nuclease at known Cas9 off-target sites. Prime editing substantially expands the scope and capabilities of genome editing, and in principle could correct up to 89% of known genetic variants associated with human diseases.


Subject(s)
DNA/genetics , Gene Editing , Cell Line , DNA Breaks, Double-Stranded , Genome , Humans , Point Mutation , Saccharomyces cerevisiae
18.
20.
Nat Biotechnol ; 37(9): 1070-1079, 2019 09.
Article in English | MEDLINE | ID: mdl-31332326

ABSTRACT

Base editors use DNA-modifying enzymes targeted with a catalytically impaired CRISPR protein to precisely install point mutations. Here, we develop phage-assisted continuous evolution of base editors (BE-PACE) to improve their editing efficiency and target sequence compatibility. We used BE-PACE to evolve cytosine base editors (CBEs) that overcome target sequence context constraints of canonical CBEs. One evolved CBE, evoAPOBEC1-BE4max, is up to 26-fold more efficient at editing cytosine in the GC context, a disfavored context for wild-type APOBEC1 deaminase, while maintaining efficient editing in all other sequence contexts tested. Another evolved deaminase, evoFERNY, is 29% smaller than APOBEC1 and edits efficiently in all tested sequence contexts. We also evolved a CBE based on CDA1 deaminase with much higher editing efficiency at difficult target sites. Finally, we used data from evolved CBEs to illuminate the relationship between deaminase activity, base editing efficiency, editing window width and byproduct formation. These findings establish a system for rapid evolution of base editors and inform their use and improvement.


Subject(s)
Adenosine Deaminase/metabolism , Directed Molecular Evolution , Gene Editing , Adenosine Deaminase/genetics , Animals , Base Sequence , CRISPR-Cas Systems , Cell Line , Gene Expression Regulation, Enzymologic , Gene Targeting , Humans , INDEL Mutation , Mice
SELECTION OF CITATIONS
SEARCH DETAIL
...