Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters











Database
Language
Publication year range
1.
Sci Rep ; 12(1): 4277, 2022 03 11.
Article in English | MEDLINE | ID: mdl-35277542

ABSTRACT

Smoking-associated DNA methylation (DNAm) signatures are reproducible among studies of mostly European descent, with mixed evidence if smoking accelerates epigenetic aging and its relationship to longevity. We evaluated smoking-associated DNAm signatures in the Costa Rican Study on Longevity and Healthy Aging (CRELES), including participants from the high longevity region of Nicoya. We measured genome-wide DNAm in leukocytes, tested Epigenetic Age Acceleration (EAA) from five clocks and estimates of telomere length (DNAmTL), and examined effect modification by the high longevity region. 489 participants had a mean (SD) age of 79.4 (10.8) years, and 18% were from Nicoya. Overall, 7.6% reported currently smoking, 35% were former smokers, and 57.4% never smoked. 46 CpGs and five regions (e.g. AHRR, SCARNA6/SNORD39, SNORA20, and F2RL3) were differentially methylated for current smokers. Former smokers had increased Horvath's EAA (1.69-years; 95% CI 0.72, 2.67), Hannum's EAA (0.77-years; 95% CI 0.01, 1.52), GrimAge (2.34-years; 95% CI1.66, 3.02), extrinsic EAA (1.27-years; 95% CI 0.34, 2.21), intrinsic EAA (1.03-years; 95% CI 0.12, 1.94) and shorter DNAmTL (- 0.04-kb; 95% CI - 0.08, - 0.01) relative to non-smokers. There was no evidence of effect modification among residents of Nicoya. Our findings recapitulate previously reported and novel smoking-associated DNAm changes in a Latino cohort.


Subject(s)
Cigarette Smoking , Epigenome , Acceleration , Adult , Aged , Cigarette Smoking/adverse effects , Cigarette Smoking/genetics , Costa Rica/epidemiology , DNA , DNA Methylation , Epigenesis, Genetic , Hispanic or Latino , Humans
2.
Front Neurosci ; 14: 198, 2020.
Article in English | MEDLINE | ID: mdl-32256307

ABSTRACT

Variations in serotoninergic signaling have been related to behavioral outcomes. Alterations in the genome, such as DNA methylation and histone modifications, are affected by serotonin neurotransmission. The amygdala is an important brain region involved in emotional responses and impulsivity, which receives serotoninergic input. In addition, studies suggest that the serotonin transporter gene network may interact with the environment and influence the risk for psychiatric disorders. We propose to investigate whether/how interactions between the exposure to early life adversity and serotonin transporter gene network in the amygdala associate with behavioral disorders. We constructed a co-expression-based polygenic risk score (ePRS) reflecting variations in the function of the serotonin transporter gene network in the amygdala and investigated its interaction with postnatal adversity on attention problems in two independent cohorts from Canada and Singapore. We also described how interactions between ePRS-5-HTT and postnatal adversity exposure predict brain gray matter density and variation in DNA methylation across the genome. We observed that the expression-based polygenic risk score, reflecting the function of the amygdala 5-HTT gene network, interacts with postnatal adversity, to predict attention and hyperactivity problems across both cohorts. Also, both postnatal adversity score and amygdala ePRS-5-HTT score, as well as their interaction, were observed to be associated with variation in DNA methylation across the genome. Variations in gray matter density in brain regions linked to attentional processes were also correlated to our ePRS score. These results confirm that the amygdala 5-HTT gene network is strongly associated with ADHD-related behaviors, brain cortical density, and epigenetic changes in the context of adversity in young children.

3.
Epigenetics Chromatin ; 10: 21, 2017.
Article in English | MEDLINE | ID: mdl-28465725

ABSTRACT

BACKGROUND: The Nicoya Peninsula in Costa Rica has one of the highest old-age life expectancies in the world, but the underlying biological mechanisms of this longevity are not well understood. As DNA methylation is hypothesized to be a component of biological aging, we focused on this malleable epigenetic mark to determine its association with current residence in Nicoya versus elsewhere in Costa Rica. Examining a population's unique DNA methylation pattern allows us to differentiate hallmarks of longevity from individual stochastic variation. These differences may be characteristic of a combination of social, biological, and environmental contexts. METHODS: In a cross-sectional subsample of the Costa Rican Longevity and Healthy Aging Study, we compared whole blood DNA methylation profiles of residents from Nicoya (n = 48) and non-Nicoya (other Costa Rican regions, n = 47) using the Infinium HumanMethylation450 microarray. RESULTS: We observed a number of differences that may be markers of delayed aging, such as bioinformatically derived differential CD8+ T cell proportions. Additionally, both site- and region-specific analyses revealed DNA methylation patterns unique to Nicoyans. We also observed lower overall variability in DNA methylation in the Nicoyan population, another hallmark of younger biological age. CONCLUSIONS: Nicoyans represent an interesting group of individuals who may possess unique immune cell proportions as well as distinct differences in their epigenome, at the level of DNA methylation.


Subject(s)
DNA Methylation , Longevity/genetics , Lymphocytes/metabolism , Aged , Aged, 80 and over , CD4-Positive T-Lymphocytes/cytology , CD4-Positive T-Lymphocytes/metabolism , CD8-Positive T-Lymphocytes/cytology , CD8-Positive T-Lymphocytes/metabolism , Costa Rica , CpG Islands , Cross-Sectional Studies , DNA/chemistry , DNA/isolation & purification , DNA/metabolism , Epigenomics , Female , Humans , Lymphocytes/cytology , Male , Middle Aged , Natural Killer T-Cells/cytology , Natural Killer T-Cells/metabolism , Sequence Analysis, DNA
SELECTION OF CITATIONS
SEARCH DETAIL