Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters











Database
Language
Publication year range
1.
Int J Toxicol ; 35(5): 584-603, 2016 09.
Article in English | MEDLINE | ID: mdl-27170682

ABSTRACT

Potassium cyanide (KCN) is an inhibitor of cytochrome C oxidase causing rapid death due to hypoxia. A well-characterized model of oral KCN intoxication is needed to test new therapeutics under the Food and Drug Administration Animal Rule. Clinical signs, plasma pH and lactate concentrations, biomarkers, histopathology, and cyanide and thiocyanate toxicokinetics were used to characterize the pathology of KCN intoxication in adult and juvenile mice. The acute oral LD50s were determined to be 11.8, 11.0, 10.9, and 9.9 mg/kg in water for adult male, adult female, juvenile male, and juvenile female mice, respectively. The time to death was rapid and dose dependent; juvenile mice had a shorter mean time to death. Juvenile mice displayed a more rapid onset and higher incidence of seizures. The time to observance of respiratory signs and prostration was rapid, but mice surviving beyond 2 hours generally recovered fully within 8 hours. At doses up to the LD50, there were no gross necropsy or microscopic findings clearly attributed to administration of KCN in juvenile or adult CD-1 mice from 24 hours to 28 days post-KCN challenge. Toxicokinetic analysis indicated rapid uptake, metabolism, and clearance of plasma cyanide. Potassium cyanide caused a rapid, dose-related decrease in blood pH and increase in serum lactate concentration. An increase in fatty acid-binding protein 3 was observed at 11.5 mg/kg KCN in adult but not in juvenile mice. These studies provide a characterization of KCN intoxication in adult and juvenile mice that can be used to screen or conduct preclinical efficacy studies of potential countermeasures.


Subject(s)
Disease Models, Animal , Potassium Cyanide/toxicity , Animals , Biomarkers/blood , Biomarkers/urine , Body Weight , Drug Evaluation, Preclinical , Fatty Acid-Binding Proteins/genetics , Fatty Acid-Binding Proteins/metabolism , Female , Hydrogen-Ion Concentration , Lactic Acid/blood , Lethal Dose 50 , Male , Mice , Mice, Inbred Strains , Thiocyanates/blood , Thiocyanates/urine , Toxicokinetics
2.
Oncotarget ; 3(2): 172-82, 2012 Feb.
Article in English | MEDLINE | ID: mdl-22383402

ABSTRACT

Oncogenic fusion proteins, such as EWS-FLI1, are excellent therapeutic targets as they are only located within the tumor. However, there are currently no agents targeted toward transcription factors, which are often considered to be 'undruggable.' A considerable body of evidence is accruing that refutes this claim based upon the intrinsic disorder of transcription factors. Our previous studies show that RNA Helicase A (RHA) enhances the oncogenesis of EWS-FLI1, a putative intrinsically disordered protein. Interruption of this protein-protein complex by small molecule inhibitors validates this interaction as a unique therapeutic target. Single enantiomer activity from a chiral compound has been recognized as strong evidence for specificity in a small molecule-protein interaction. Our compound, YK-4-279, has a chiral center and can be separated into two enantiomers by chiral HPLC. We show that there is a significant difference in activity between the two enantiomers. (S)-YK-4-279 is able to disrupt binding between EWS-FLI1 and RHA in an immunoprecipitation assay and blocks the transcriptional activity of EWS-FLI1, while (R)-YK-4-279 cannot. Enantiospecific effects are also established in cytotoxicity assays and caspase assays, where up to a log-fold difference is seen between (S)-YK-4-279 and the racemic YK-4-279. Our findings indicate that only one enantiomer of our small molecule is able to specifically target a protein-protein interaction. This work is significant for its identification of a single enantiomer effect upon a protein interaction suggesting that small molecule targeting of intrinsically disordered proteins can be specific. Furthermore, proving YK-4-279 has only one functional enantiomer will be helpful in moving this compound towards clinical trials.


Subject(s)
Indoles/pharmacology , Oncogene Proteins, Fusion/antagonists & inhibitors , Proto-Oncogene Protein c-fli-1/antagonists & inhibitors , RNA-Binding Protein EWS/antagonists & inhibitors , Sarcoma, Ewing/drug therapy , Animals , Caspase 3/metabolism , Cell Line, Tumor , Cell Proliferation , Humans , Rats , Rats, Sprague-Dawley , Stereoisomerism , Transcription Factors/metabolism , Transcriptional Activation , Transplantation, Heterologous
SELECTION OF CITATIONS
SEARCH DETAIL