Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
PLoS Pathog ; 19(11): e1011719, 2023 Nov.
Article in English | MEDLINE | ID: mdl-37939149

ABSTRACT

Clinical studies report that viral infections promote acute or chronic bacterial infections at multiple host sites. These viral-bacterial co-infections are widely linked to more severe clinical outcomes. In experimental models in vitro and in vivo, virus-induced interferon responses can augment host susceptibility to secondary bacterial infection. Here, we used a cell-based screen to assess 389 interferon-stimulated genes (ISGs) for their ability to induce chronic Pseudomonas aeruginosa infection. We identified and validated five ISGs that were sufficient to promote bacterial infection. Furthermore, we dissected the mechanism of action of hexokinase 2 (HK2), a gene involved in the induction of aerobic glycolysis, commonly known as the Warburg effect. We report that HK2 upregulation mediates the induction of Warburg effect and secretion of L-lactate, which enhances chronic P. aeruginosa infection. These findings elucidate how the antiviral immune response renders the host susceptible to secondary bacterial infection, revealing potential strategies for viral-bacterial co-infection treatment.


Subject(s)
Bacterial Infections , Coinfection , Virus Diseases , Viruses , Humans , Interferons/metabolism , Viruses/metabolism
2.
mSphere ; 3(4)2018 08 15.
Article in English | MEDLINE | ID: mdl-30111629

ABSTRACT

Staphylococcus aureus is a major cause of chronic respiratory infection in patients with cystic fibrosis (CF). We recently showed that Pseudomonas aeruginosa exhibits enhanced biofilm formation during respiratory syncytial virus (RSV) coinfection on human CF airway epithelial cells (AECs). The impact of respiratory viruses on other bacterial pathogens during polymicrobial infections in CF remains largely unknown. To investigate if S. aureus biofilm growth in the CF airways is impacted by virus coinfection, we evaluated S. aureus growth on CF AECs. Initial studies showed an increase in S. aureus growth over 24 h, and microscopy revealed biofilm-like clusters of bacteria on CF AECs. Biofilm growth was enhanced when CF AECs were coinfected with RSV, and this observation was confirmed with S. aureus CF clinical isolates. Apical conditioned medium from RSV-infected cells promoted S. aureus biofilms in the absence of the host epithelium, suggesting that a secreted factor produced during virus infection benefits S. aureus biofilms. Exogenous iron addition did not significantly alter biofilm formation, suggesting that it is not likely the secreted factor. We further characterized S. aureus-RSV coinfection in our model using dual host-pathogen RNA sequencing, allowing us to observe specific contributions of S. aureus and RSV to the host response during coinfection. Using the dual host-pathogen RNA sequencing approach, we observed increased availability of nutrients from the host and upregulation of S. aureus genes involved in growth, protein translation and export, and amino acid metabolism during RSV coinfection.IMPORTANCE The airways of individuals with cystic fibrosis (CF) are commonly chronically infected, and Staphylococcus aureus is the dominant bacterial respiratory pathogen in CF children. CF patients also experience frequent respiratory virus infections, and it has been hypothesized that virus coinfection increases the severity of S. aureus lung infections in CF. We investigated the relationship between S. aureus and the CF airway epithelium and observed that coinfection with respiratory syncytial virus (RSV) enhances S. aureus biofilm growth. However, iron, which was previously found to be a significant factor influencing Pseudomonas aeruginosa biofilms during virus coinfection, plays a minor role in S. aureus coinfections. Transcriptomic analyses provided new insight into how bacterial and viral pathogens alter host defense and suggest potential pathways by which dampening of host responses to one pathogen may favor persistence of another in the CF airways, highlighting complex interactions occurring between bacteria, viruses, and the host during polymicrobial infections.


Subject(s)
Biofilms/growth & development , Cystic Fibrosis/complications , Epithelial Cells/microbiology , Respiratory Syncytial Virus Infections/complications , Staphylococcal Infections/complications , Staphylococcal Infections/microbiology , Staphylococcus aureus/growth & development , Cell Culture Techniques , Coinfection/microbiology , Culture Media, Conditioned , Host-Pathogen Interactions , Humans , Models, Biological
3.
Article in English | MEDLINE | ID: mdl-27799207

ABSTRACT

Sodium nitrite inhibits bacterial respiration and is in development as an antimicrobial for chronic bacterial infections associated with cystic fibrosis. The goal of the current study was to investigate the interaction between nitrite and ciprofloxacin. Using liquid culture killing assays and a biotic biofilm model, we observed that nitrite induces tolerance of ciprofloxacin.


Subject(s)
Anti-Bacterial Agents/pharmacology , Biofilms/drug effects , Ciprofloxacin/pharmacology , Pseudomonas aeruginosa/drug effects , Sodium Nitrite/pharmacology , Cystic Fibrosis/microbiology , Microbial Sensitivity Tests
SELECTION OF CITATIONS
SEARCH DETAIL
...