Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 6 de 6
Filter
Add more filters










Database
Language
Publication year range
1.
Autophagy ; 18(3): 473-495, 2022 03.
Article in English | MEDLINE | ID: mdl-34241570

ABSTRACT

Macroautophagy/autophagy is an evolutionarily conserved pathway responsible for clearing cytosolic aggregated proteins, damaged organelles or invading microorganisms. Dysfunctional autophagy leads to pathological accumulation of the cargo, which has been linked to a range of human diseases, including neurodegenerative diseases, infectious and autoimmune diseases and various forms of cancer. Cumulative work in animal models, application of genetic tools and pharmacologically active compounds, has suggested the potential therapeutic value of autophagy modulation in disease, as diverse as Huntington, Salmonella infection, or pancreatic cancer. Autophagy activation versus inhibition strategies are being explored, while the role of autophagy in pathophysiology is being studied in parallel. However, the progress of preclinical and clinical development of autophagy modulators has been greatly hampered by the paucity of selective pharmacological agents and biomarkers to dissect their precise impact on various forms of autophagy and cellular responses. Here, we summarize established and new strategies in autophagy-related drug discovery and indicate a path toward establishing a more efficient discovery of autophagy-selective pharmacological agents. With this knowledge at hand, modern concepts for therapeutic exploitation of autophagy might become more plausible.Abbreviations: ALS: amyotrophic lateral sclerosis; AMPK: AMP-activated protein kinase; ATG: autophagy-related gene; AUTAC: autophagy-targeting chimera; CNS: central nervous system; CQ: chloroquine; GABARAP: gamma-aminobutyric acid type A receptor-associated protein; HCQ: hydroxychloroquine; LYTAC: lysosome targeting chimera; MAP1LC3/LC3: microtubule associated protein 1 light chain 3; MTOR: mechanistic target of rapamycin kinase; NDD: neurodegenerative disease; PDAC: pancreatic ductal adenocarcinoma; PE: phosphatidylethanolamine; PIK3C3/VPS34: phosphatidylinositol 3-kinase catalytic subunit type 3; PtdIns3K: class III phosphatidylinositol 3-kinase; PtdIns3P: phosphatidylinositol 3-phosphate; PROTAC: proteolysis-targeting chimera; SARS-CoV-2: severe acute respiratory syndrome coronavirus 2; SQSTM1/p62: sequestosome 1; ULK1: unc-51 like autophagy activating kinase 1.


Subject(s)
COVID-19 , Neurodegenerative Diseases , Animals , Autophagy/physiology , Class III Phosphatidylinositol 3-Kinases/metabolism , SARS-CoV-2
2.
Turk Gogus Kalp Damar Cerrahisi Derg ; 29(4): 552-555, 2021 Oct.
Article in English | MEDLINE | ID: mdl-35096456

ABSTRACT

Undifferentiated pleomorphic sarcoma or, as formerly called, malignant fibrous histiocytoma is a type of sarcoma which originates from fibroblast and histiocytic cells. It is the most common type of sarcoma among all soft tissue sarcomas in adults. Its most common site is the lower limb, followed by the upper limb and the retroperitoneum. It is rarely encountered on chest wall. In the differential diagnosis of masses on chest wall, it is important to consider undifferentiated pleomorphic sarcoma in surgical planning. In this article, we report a male case with a giant undifferentiated pleomorphic sarcoma located above the right scapula.

3.
J Nanobiotechnology ; 18(1): 65, 2020 Apr 28.
Article in English | MEDLINE | ID: mdl-32345308

ABSTRACT

Nanoparticle based gene delivery systems holds great promise. Superparamagnetic iron oxide nanoparticles (SPIONs) are being heavily investigated due to good biocompatibility and added diagnostic potential, rendering such nanoparticles theranostic. Yet, commonly used cationic coatings for efficient delivery of such anionic cargos, results in significant toxicity limiting translation of the technology to the clinic. Here, we describe a highly biocompatible, small and non-cationic SPION-based theranostic nanoparticles as novel gene therapy agents. We propose for the first-time, the usage of the microRNA machinery RISC complex component Argonaute 2 (AGO2) protein as a microRNA stabilizing agent and a delivery vehicle. In this study, AGO2 protein-conjugated, anti-HER2 antibody-linked and fluorophore-tagged SPION nanoparticles were developed (SP-AH nanoparticles) and used as a carrier for an autophagy inhibitory microRNA, MIR376B. These functionalized nanoparticles selectively delivered an effective amount of the microRNA into HER2-positive breast cancer cell lines in vitro and in a xenograft nude mice model of breast cancer in vivo, and successfully blocked autophagy. Furthermore, combination of the chemotherapy agent cisplatin with MIR376B-loaded SP-AH nanoparticles increased the efficacy of the anti-cancer treatment both in vitro in cells and in vivo in the nude mice. Therefore, we propose that AGO2 protein conjugated SPIONs are a new class of theranostic nanoparticles and can be efficiently used as innovative, non-cationic, non-toxic gene therapy tools for targeted therapy of cancer.


Subject(s)
Argonaute Proteins/chemistry , Autophagy , Biocompatible Materials/therapeutic use , Breast Neoplasms/drug therapy , Magnetite Nanoparticles/chemistry , MicroRNAs/metabolism , Animals , Antibodies/chemistry , Antibodies/immunology , Antineoplastic Agents/chemistry , Antineoplastic Agents/therapeutic use , Autophagy/drug effects , Beclin-1/genetics , Beclin-1/metabolism , Biocompatible Materials/chemistry , Biocompatible Materials/pharmacology , Breast Neoplasms/pathology , Cell Line, Tumor , Cisplatin/chemistry , Cisplatin/therapeutic use , Female , Humans , Mice , Mice, Nude , MicroRNAs/chemistry , Receptor, ErbB-2/immunology , Transplantation, Heterologous
4.
Autophagy ; 15(3): 375-390, 2019 03.
Article in English | MEDLINE | ID: mdl-30290719

ABSTRACT

Macroautophagy (autophagy) is an evolutionarily conserved recycling and stress response mechanism. Active at basal levels in eukaryotes, autophagy is upregulated under stress providing cells with building blocks such as amino acids. A lysosome-integrated sensor system composed of RRAG GTPases and MTOR complex 1 (MTORC1) regulates lysosome biogenesis and autophagy in response to amino acid availability. Stress-mediated inhibition of MTORC1 results in the dephosphorylation and nuclear translocation of the TFE/MITF family of transcriptional factors, and triggers an autophagy- and lysosomal-related gene transcription program. The role of family members TFEB and TFE3 have been studied in detail, but the importance of MITF proteins in autophagy regulation is not clear so far. Here we introduce for the first time a specific role for MITF in autophagy control that involves upregulation of MIR211. We show that, under stress conditions including starvation and MTOR inhibition, a MITF-MIR211 axis constitutes a novel feed-forward loop that controls autophagic activity in cells. Direct targeting of the MTORC2 component RICTOR by MIR211 led to the inhibition of the MTORC1 pathway, further stimulating MITF translocation to the nucleus and completing an autophagy amplification loop. In line with a ubiquitous function, MITF and MIR211 were co-expressed in all tested cell lines and human tissues, and the effects on autophagy were observed in a cell-type independent manner. Thus, our study provides direct evidence that MITF has rate-limiting and specific functions in autophagy regulation. Collectively, the MITF-MIR211 axis constitutes a novel and universal autophagy amplification system that sustains autophagic activity under stress conditions. Abbreviations: ACTB: actin beta; AKT: AKT serine/threonine kinase; AKT1S1/PRAS40: AKT1 substrate 1; AMPK: AMP-activated protein kinase; ATG: autophagy-related; BECN1: beclin 1; DEPTOR: DEP domain containing MTOR interacting protein; GABARAP: GABA type A receptor-associated protein; HIF1A: hypoxia inducible factor 1 subunit alpha; LAMP1: lysosomal associated membrane protein 1; MAP1LC3B/LC3B: microtubule associated protein 1 light chain 3 beta; MAPKAP1/SIN1: mitogen-activated protein kinase associated protein 1; MITF: melanogenesis associated transcription factor; MLST8: MTOR associated protein, LST8 homolog; MRE: miRNA response element; MTOR: mechanistic target of rapamycin kinase; MTORC1: MTOR complex 1; MTORC2: MTOR complex 2; PRR5/Protor 1: proline rich 5; PRR5L/Protor 2: proline rich 5 like; RACK1: receptor for activated C kinase 1; RPTOR: regulatory associated protein of MTOR complex 1; RICTOR: RPTOR independent companion of MTOR complex 2; RPS6KB/p70S6K: ribosomal protein S6 kinase; RT-qPCR: quantitative reverse transcription-polymerase chain reaction; SQSTM1: sequestosome 1; STK11/LKB1: serine/threonine kinase 11; TFE3: transcription factor binding to IGHM enhancer 3; TFEB: transcription factor EB; TSC1/2: TSC complex subunit 1/2; ULK1: unc-51 like autophagy activating kinase 1; UVRAG: UV radiation resistance associated; VIM: vimentin; VPS11: VPS11, CORVET/HOPS core subunit; VPS18: VPS18, CORVET/HOPS core subunit; WIPI1: WD repeat domain, phosphoinositide interacting 1.


Subject(s)
Autophagy/genetics , MicroRNAs/metabolism , Microphthalmia-Associated Transcription Factor/metabolism , Rapamycin-Insensitive Companion of mTOR Protein/metabolism , Stress, Physiological/genetics , TOR Serine-Threonine Kinases/metabolism , Autophagy/drug effects , Chromatin Immunoprecipitation , HEK293 Cells , HeLa Cells , Humans , MCF-7 Cells , Mechanistic Target of Rapamycin Complex 1/metabolism , Mechanistic Target of Rapamycin Complex 2 , MicroRNAs/antagonists & inhibitors , MicroRNAs/genetics , Microphthalmia-Associated Transcription Factor/genetics , Rapamycin-Insensitive Companion of mTOR Protein/antagonists & inhibitors , Signal Transduction/genetics , TOR Serine-Threonine Kinases/antagonists & inhibitors
5.
Methods Mol Biol ; 1854: 131-146, 2019.
Article in English | MEDLINE | ID: mdl-29022289

ABSTRACT

Autophagy is a cellular survival pathway that is necessary for the degradation of cellular constituents such as long-lived proteins and damaged organelles. Conditions resulting in cellular stress such as starvation or hypoxia might activate autophagy. Being at the crossroads of various cellular response pathways, dysregulation of autophagy might result in pathological states including cancer and neurodegenerative diseases. Autophagy has also been shown to participate in stemness. MicroRNAs were introduced as novel regulators of autophagy, and accumulating results underlined the fact that they constituted an important layer of biological control mechanism on the autophagic activity.MicroRNAs are protein noncoding small RNAs that control cellular levels of transcripts and proteins through posttrancriptional mechanisms. Novel miRNAs in human and mouse genomes are yet to be identified. Considering the emerging role of autophagy in health and disease, identification of novel autophagy-regulating miRNAs and determination of relations between miRNA expression and physiological and pathological conditions might contribute to a better understanding of mechanisms governing health and disease. High-throughput techniques were developed for miRNA profiling, yet for a thorough characterization and miRNA target determination, miRNA cloning remains as an important step. Here, we describe a modified miRNA cloning method for the characterization of novel autophagy-regulating miRNAs.


Subject(s)
Autophagy , Cloning, Molecular/methods , MicroRNAs/genetics , Animals , Autophagy-Related Proteins/genetics , Cells, Cultured , Gene Expression Regulation, Neoplastic , Humans , Mice
6.
Front Oncol ; 7: 65, 2017.
Article in English | MEDLINE | ID: mdl-28459042

ABSTRACT

Macroautophagy (autophagy herein) is a cellular stress response and a survival pathway that is responsible for the degradation of long-lived proteins, protein aggregates, as well as damaged organelles in order to maintain cellular homeostasis. Consequently, abnormalities of autophagy are associated with a number of diseases, including Alzheimers's disease, Parkinson's disease, and cancer. According to the current view, autophagy seems to serve as a tumor suppressor in the early phases of cancer formation, yet in later phases, autophagy may support and/or facilitate tumor growth, spread, and contribute to treatment resistance. Therefore, autophagy is considered as a stage-dependent dual player in cancer. microRNAs (miRNAs) are endogenous non-coding small RNAs that negatively regulate gene expression at a post-transcriptional level. miRNAs control several fundamental biological processes, and autophagy is no exception. Furthermore, accumulating data in the literature indicate that dysregulation of miRNA expression contribute to the mechanisms of cancer formation, invasion, metastasis, and affect responses to chemotherapy or radiotherapy. Therefore, considering the importance of autophagy for cancer biology, study of autophagy-regulating miRNA in cancer will allow a better understanding of malignancies and lead to the development of novel disease markers and therapeutic strategies. The potential to provide study of some of these cancer-related miRNAs were also implicated in autophagy regulation. In this review, we will focus on autophagy, miRNA, and cancer connection, and discuss its implications for cancer biology and cancer treatment.

SELECTION OF CITATIONS
SEARCH DETAIL
...