Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 23
Filter
Add more filters











Publication year range
1.
Redox Biol ; 75: 103247, 2024 Sep.
Article in English | MEDLINE | ID: mdl-39047636

ABSTRACT

Heme oxygenase-1 (HO-1, HMOX1) degrades heme protecting cells from heme-induced oxidative damage. Beyond its well-established cellular functions, heme has emerged as a stabilizer of G-quadruplexes. These secondary DNA structures interfere with DNA replication. We recently revealed that nuclear HO-1 colocalizes with DNA G-quadruplexes and promotes their removal. Here, we investigate whether HO-1 safeguards cells against replication stress. Experiments were conducted in control and HMOX1-deficient HEK293T cell lines. Immunostaining unveiled that DNA G-quadruplexes accumulated in the absence of HO-1, the effect that was further enhanced in response to δ-aminolevulinic acid (ALA), a substrate in heme synthesis. This was associated with replication stress, as evidenced by an elevated proportion of stalled forks analyzed by fiber assay. We observed the same effects in hematopoietic stem cells isolated from Hmox1 knockout mice and in a lymphoblastoid cell line from an HMOX1-deficient patient. Interestingly, in the absence of HO-1, the speed of fork progression was higher, and the response to DNA conformational hindrance less stringent, indicating dysfunction of the PARP1-p53-p21 axis. PARP1 activity was not decreased in the absence of HO-1. Instead, we observed that HO-1 deficiency impairs the nuclear import and accumulation of p53, an effect dependent on the removal of excess heme. We also demonstrated that administering ALA is a more specific method for increasing intracellular free heme compared to treatment with hemin, which in turn induces strong lipid peroxidation. Our results indicate that protection against replication stress is a universal feature of HO-1, presumably contributing to its widely recognized cytoprotective activity.


Subject(s)
DNA Replication , Heme Oxygenase-1 , Humans , Heme Oxygenase-1/metabolism , Heme Oxygenase-1/genetics , Animals , Mice , HEK293 Cells , Oxidative Stress , Heme/metabolism , Mice, Knockout , G-Quadruplexes , Aminolevulinic Acid/pharmacology , Aminolevulinic Acid/metabolism , DNA Damage
2.
Mol Cell ; 84(13): 2472-2489.e8, 2024 Jul 11.
Article in English | MEDLINE | ID: mdl-38996458

ABSTRACT

Pseudouridine (Ψ), the isomer of uridine, is ubiquitously found in RNA, including tRNA, rRNA, and mRNA. Human pseudouridine synthase 3 (PUS3) catalyzes pseudouridylation of position 38/39 in tRNAs. However, the molecular mechanisms by which it recognizes its RNA targets and achieves site specificity remain elusive. Here, we determine single-particle cryo-EM structures of PUS3 in its apo form and bound to three tRNAs, showing how the symmetric PUS3 homodimer recognizes tRNAs and positions the target uridine next to its active site. Structure-guided and patient-derived mutations validate our structural findings in complementary biochemical assays. Furthermore, we deleted PUS1 and PUS3 in HEK293 cells and mapped transcriptome-wide Ψ sites by Pseudo-seq. Although PUS1-dependent sites were detectable in tRNA and mRNA, we found no evidence that human PUS3 modifies mRNAs. Our work provides the molecular basis for PUS3-mediated tRNA modification in humans and explains how its tRNA modification activity is linked to intellectual disabilities.


Subject(s)
Cryoelectron Microscopy , Hydro-Lyases , Intramolecular Transferases , Pseudouridine , RNA, Transfer , Humans , Catalytic Domain , HEK293 Cells , Hydro-Lyases/metabolism , Hydro-Lyases/genetics , Hydro-Lyases/chemistry , Intellectual Disability/genetics , Intellectual Disability/metabolism , Intellectual Disability/enzymology , Models, Molecular , Mutation , Protein Binding , Pseudouridine/metabolism , Pseudouridine/genetics , RNA, Messenger/genetics , RNA, Messenger/metabolism , RNA, Transfer/metabolism , RNA, Transfer/genetics , Substrate Specificity
3.
Genet Med ; 26(6): 101104, 2024 06.
Article in English | MEDLINE | ID: mdl-38411040

ABSTRACT

PURPOSE: The functionality of many cellular proteins depends on cofactors; yet, they have only been implicated in a minority of Mendelian diseases. Here, we describe the first 2 inherited disorders of the cytosolic iron-sulfur protein assembly system. METHODS: Genetic testing via genome sequencing was applied to identify the underlying disease cause in 3 patients with microcephaly, congenital brain malformations, progressive developmental and neurologic impairments, recurrent infections, and a fatal outcome. Studies in patient-derived skin fibroblasts and zebrafish models were performed to investigate the biochemical and cellular consequences. RESULTS: Metabolic analysis showed elevated uracil and thymine levels in body fluids but no pathogenic variants in DPYD, encoding dihydropyrimidine dehydrogenase. Genome sequencing identified compound heterozygosity in 2 patients for missense variants in CIAO1, encoding cytosolic iron-sulfur assembly component 1, and homozygosity for an in-frame 3-nucleotide deletion in MMS19, encoding the MMS19 homolog, cytosolic iron-sulfur assembly component, in the third patient. Profound alterations in the proteome, metabolome, and lipidome were observed in patient-derived fibroblasts. We confirmed the detrimental effect of deficiencies in CIAO1 and MMS19 in zebrafish models. CONCLUSION: A general failure of cytosolic and nuclear iron-sulfur protein maturation caused pleiotropic effects. The critical function of the cytosolic iron-sulfur protein assembly machinery for antiviral host defense may well explain the recurrent severe infections occurring in our patients.


Subject(s)
Iron-Sulfur Proteins , Zebrafish , Animals , Humans , Iron-Sulfur Proteins/genetics , Iron-Sulfur Proteins/metabolism , Male , Female , Phenotype , Fibroblasts/metabolism , Fibroblasts/pathology , Cytosol/metabolism , Neurodegenerative Diseases/genetics , Neurodegenerative Diseases/metabolism , Neurodegenerative Diseases/pathology , Microcephaly/genetics , Microcephaly/pathology , Infant , Metallochaperones
4.
Methods Mol Biol ; 2752: 127-141, 2024.
Article in English | MEDLINE | ID: mdl-38194032

ABSTRACT

Immunofluorescence (IF) microscopy is arguably one of the most commonly used methods for studying structure and composition of stress granules (SGs). While in most cases standard IF protocols are sufficient to visualize protein components of SGs, concurrent detection of proteins and transcripts in stress granules requires more sophisticated and problematic approaches. Here we present a well-established, simple, robust, and fluorescent protein-compatible method for simultaneous detection of proteins and transcripts in individual stress granules using combination of IF and single-molecule RNA fluorescence in situ hybridization (smRNA FISH).


Subject(s)
RNA , Stress Granules , In Situ Hybridization, Fluorescence , Fluorescent Antibody Technique , Microscopy, Fluorescence , RNA/genetics
5.
Sci Rep ; 14(1): 1574, 2024 01 18.
Article in English | MEDLINE | ID: mdl-38238463

ABSTRACT

Regnase-2 (Reg-2/MCPIP2/ZC3H12B) is uniquely expressed at a high level in the healthy brain and down-regulated in samples from patients with glioma, reaching the lowest level in high-grade glioblastoma multiforme (GBM). This RNase is involved in the regulation of neuroinflammation through the degradation of IL-6 and IL-1 mRNAs, key pro-inflammatory cytokines for GBM pathology. Reg-2 is a strong inhibitor of the proliferation of human glioblastoma cell lines and blocks their potential to form colonies. Here, we describe that overexpression of Reg-2 stalls glioblastoma cells in the G1 phase of the cell cycle and reduces the level of transcripts implicated in cell cycle progression. These newly identified targets include CCND1, CCNE1, CCNE2, CCNA2, CCNB1, and CCNB2, encoding the cyclins as well as AURKA and PLK1, encoding two important mitosis regulators. By RNA immunoprecipitation we confirmed the direct interaction of Reg-2 with the investigated transcripts. We also tested mRNA regions involved in their interaction with Reg-2 on the example of CCNE2. Reg-2 interacts with the 3'UTR of CCNE2 in a dose-dependent manner. In conclusion, our results indicate that Reg-2 controls key elements in GBM biology by restricting neuroinflammation and inhibiting cancer cell proliferation.


Subject(s)
Brain Neoplasms , Glioblastoma , Humans , Glioblastoma/pathology , Neuroinflammatory Diseases , Cell Line, Tumor , Brain Neoplasms/pathology , Cell Proliferation/genetics , Gene Expression Regulation, Neoplastic
6.
FASEB J ; 37(3): e22798, 2023 03.
Article in English | MEDLINE | ID: mdl-36753401

ABSTRACT

The precise physiological functions and mechanisms regulating RNase Regnase-2 (Reg-2/ZC3H12B/MCPIP2) activity remain enigmatic. We found that Reg-2 actively modulates neuroinflammation in nontransformed cells, including primary astrocytes. Downregulation of Reg-2 in these cells results in increased mRNA levels of proinflammatory cytokines IL-1ß and IL-6. In primary astrocytes, Reg-2 also regulates the mRNA level of Regnase-1 (Reg-1/ZC3H12A/MCPIP1). Reg-2 is expressed at high levels in the healthy brain, but its expression is reduced during neuroinflammation as well as glioblastoma progression. This process is associated with the upregulation of Reg-1. Conversely, overexpression of Reg-2 is accompanied by the downregulation of Reg-1 in glioma cells in a nucleolytic NYN/PIN domain-dependent manner. Interestingly, low levels of Reg-2 and high levels of Reg-1 correlate with poor-glioblastoma patients' prognoses. While Reg-2 restricts the basal levels of proinflammatory cytokines in resting astrocytes, its expression is reduced in IL-1ß-activated astrocytes. Following IL-1ß exposure, Reg-2 is phosphorylated, ubiquitinated, and degraded by proteasomes. Simultaneously, the Reg-2 transcript is destabilized by tristetraprolin (TTP) and Reg-1 through the AREs elements and conservative stem-loop structure present in its 3'UTR. Thus, the peer-control loop, of Reg-1 and Reg-2 opposing each other, exists. The involvement of TTP in Reg-2 mRNA turnover is confirmed by the observation that high TTP levels correlate with the downregulation of the Reg-2 expression in high-grade human gliomas. Additionally, obtained results reveal the importance of Reg-2 in inhibiting human and mouse glioma cell proliferation. Our current studies identify Reg-2 as a critical regulator of homeostasis in the brain.


Subject(s)
Glioblastoma , Neuroinflammatory Diseases , Animals , Humans , Mice , Cytokines/metabolism , Down-Regulation , RNA, Messenger/genetics , RNA, Messenger/metabolism
7.
Mol Biotechnol ; 65(10): 1598-1607, 2023 Oct.
Article in English | MEDLINE | ID: mdl-36707469

ABSTRACT

In recent years, CRISPR interference (CRISPRi) technology of gene silencing has emerged as a promising alternative to RNA interference (RNAi) surpassing the latter in terms of efficiency and accuracy. Here, we describe the construction of a set of transposon vectors suitable for constitutive or tetracycline (doxycycline)-inducible silencing of genes of interest via CRISPRi method and conferring three different antibiotic resistances, using vectors available via Addgene repository. We have analyzed the performance of the new vectors in the silencing of mouse Adam10 and human lncRNA, NORAD. The empty vector variants can be used to efficiently silence any genes of interest.


Subject(s)
RNA, Long Noncoding , Animals , Mice , Humans , RNA, Long Noncoding/genetics , Genetic Vectors/genetics , Clustered Regularly Interspaced Short Palindromic Repeats , RNA Interference , Gene Silencing
8.
J Photochem Photobiol B ; 234: 112500, 2022 Sep.
Article in English | MEDLINE | ID: mdl-35816857

ABSTRACT

BACKGROUND AND AIM: A photosensitizer (PS) delivery and comprehensive tumor targeting platform was developed that is centered on the photosensitization of key pharmacological targets in solid tumors (cancer cells, tumor vascular endothelium, and cellular and non-cellular components of the tumor microenvironment) before photodynamic therapy (PDT). Interstitially targeted liposomes (ITLs) encapsulating zinc phthalocyanine (ZnPC) and aluminum phthalocyanine (AlPC) were formulated for passive targeting of the tumor microenvironment. In previous work it was established that the PEGylated ITLs were taken up by cultured cholangiocarcinoma cells. The aim of this study was to verify previous results in cancer cells and to determine whether the ITLs can also be used to photosensitize cells in the tumor microenvironment and vasculature. Following positive results, rudimentary in vitro and in vivo experiments were performed with ZnPC-ITLs and AlPC-ITLs as well as their water-soluble tetrasulfonated derivatives (ZnPCS4 and AlPCS4) to assemble a research dossier and bring this platform closer to clinical transition. METHODS: Flow cytometry and confocal microscopy were employed to determine ITL uptake and PS distribution in cholangiocarcinoma (SK-ChA-1) cells, endothelial cells (HUVECs), fibroblasts (NIH-3T3), and macrophages (RAW 264.7). Uptake of ITLs by endothelial cells was verified under flow conditions in a flow chamber. Dark toxicity and PDT efficacy were determined by cell viability assays, while the mode of cell death and cell cycle arrest were assayed by flow cytometry. In vivo systemic toxicity was assessed in zebrafish and chicken embryos, whereas skin phototoxicity was determined in BALB/c nude mice. A PDT efficacy pilot was conducted in BALB/c nude mice bearing human triple-negative breast cancer (MDA-MB-231) xenografts. RESULTS: The key findings were that (1) photodynamically active PSs (i.e., all except ZnPCS4) were able to effectively photosensitize cancer cells and non-cancerous cells; (2) following PDT, photodynamically active PSs were highly toxic-to-potent as per anti-cancer compound classification; (3) the photodynamically active PSs did not elicit notable systemic toxicity in zebrafish and chicken embryos; (4) ITL-delivered ZnPC and ZnPCS4 were associated with skin phototoxicity, while the aluminum-containing PSs did not exert detectable skin phototoxicity; and (5) ITL-delivered ZnPC and AlPC were equally effective in their tumor-killing capacity in human tumor breast cancer xenografts and superior to other non-phthalocyanine PSs when appraised on a per mole administered dose basis. CONCLUSIONS: AlPC(S4) are the safest and most effective PSs to integrate into the comprehensive tumor targeting and PS delivery platform. Pending further in vivo validation, these third-generation PSs may be used for multi-compartmental tumor photosensitization.


Subject(s)
Cholangiocarcinoma , Organometallic Compounds , Photochemotherapy , Animals , Cell Line, Tumor , Chick Embryo , Endothelial Cells , Humans , Liposomes , Mice , Mice, Nude , Organometallic Compounds/pharmacology , Organometallic Compounds/therapeutic use , Photochemotherapy/methods , Photosensitizing Agents/pharmacology , Photosensitizing Agents/therapeutic use , Tumor Microenvironment , Zebrafish
9.
Methods Mol Biol ; 2451: 703-709, 2022.
Article in English | MEDLINE | ID: mdl-35505042

ABSTRACT

Liposomal nanocarriers are intensively investigated as delivery vehicles for photoactivatable agents used in photodynamic therapy (PDT). The uptake, intracellular distribution, and processing of the nanocarriers are of paramount importance for the effectiveness of the therapy; visualization and analysis of these processes can, therefore, stimulate the development of improved PDT modalities. Here we describe a simple protocol, based on super-resolution imaging, that can be used for detailed quantification of concentration, distribution, and size of individual lipid nanocarriers in adherent mammalian cells.


Subject(s)
Nanoparticles , Photochemotherapy , Animals , Drug Carriers , Drug Delivery Systems , Lipids , Mammals
10.
Mol Ther Nucleic Acids ; 26: 711-731, 2021 Dec 03.
Article in English | MEDLINE | ID: mdl-34703654

ABSTRACT

In parallel with the expansion of RNA interference (RNAi) techniques, accumulating evidence indicates that RNAi analyses might be seriously biased due to the off-target effects of gene-specific short hairpin RNAs (shRNAs). Our findings indicated that off-target effects of non-targeting shRNA comprise another source of misinterpreted shRNA-based data. We found that SHC016, which is one of two non-targeting shRNA controls for the MISSION (commercialized TRC) library, exerts deleterious effects that lead to elimination of the shRNA-coding cassette from the genomes of cultured murine and human cells. Here, we used a lentiviral vector with inducible SHC016 expression to confirm that this shRNA induces apoptosis in murine cells and senescence or mitotic catastrophe depending on the p53 status in human tumor cells. We identified the core spliceosomal protein, small nuclear ribonucleoprotein Sm D3 (SNRPD3), as a major SHC016 target in several cell lines and confirmed that CRISPRi knockdown of SNRPD3 mimics the effects of SHC016 expression in A549 and U251 cells. The overexpression of SNRPD3 rescued U251 cells from SHC016-induced mitotic catastrophe. Our findings disqualified non-targeting SHC016 shRNA and added a new premise to the discussion about the sources of uncertainty in RNAi results.

11.
Int J Mol Sci ; 22(14)2021 Jul 07.
Article in English | MEDLINE | ID: mdl-34298932

ABSTRACT

The members of the ZC3H12/MCPIP/Regnase family of RNases have emerged as important regulators of inflammation. In contrast to Regnase-1, -2 and -4, a thorough characterization of Regnase-3 (Reg-3) has not yet been explored. Here we demonstrate that Reg-3 differs from other family members in terms of NYN/PIN domain features, cellular localization pattern and substrate specificity. Together with Reg-1, the most comprehensively characterized family member, Reg-3 shared IL-6, IER-3 and Reg-1 mRNAs, but not IL-1ß mRNA, as substrates. In addition, Reg-3 was found to be the only family member which regulates transcript levels of TNF, a cytokine implicated in chronic inflammatory diseases including psoriasis. Previous meta-analysis of genome-wide association studies revealed Reg-3 to be among new psoriasis susceptibility loci. Here we demonstrate that Reg-3 transcript levels are increased in psoriasis patient skin tissue and in an experimental model of psoriasis, supporting the immunomodulatory role of Reg-3 in psoriasis, possibly through degradation of mRNA for TNF and other factors such as Reg-1. On the other hand, Reg-1 was found to destabilize Reg-3 transcripts, suggesting reciprocal regulation between Reg-3 and Reg-1 in the skin. We found that either Reg-1 or Reg-3 were expressed in human keratinocytes in vitro. However, in contrast to robustly upregulated Reg-1 mRNA levels, Reg-3 expression was not affected in the epidermis of psoriasis patients. Taken together, these data suggest that epidermal levels of Reg-3 are negatively regulated by Reg-1 in psoriasis, and that Reg-1 and Reg-3 are both involved in psoriasis pathophysiology through controlling, at least in part different transcripts.


Subject(s)
Psoriasis/metabolism , Psoriasis/pathology , Ribonucleases/metabolism , Adult , Animals , Cells, Cultured , Cytokines/metabolism , Epidermis/metabolism , Epidermis/pathology , Female , Humans , Inflammation/metabolism , Inflammation/pathology , Keratinocytes/metabolism , Keratinocytes/pathology , Male , Mice, Inbred C57BL , Mice, Knockout , Middle Aged , RNA, Messenger/genetics , Skin/metabolism , Skin/pathology
12.
J Photochem Photobiol B ; 216: 112146, 2021 Mar.
Article in English | MEDLINE | ID: mdl-33601256

ABSTRACT

BACKGROUND AND AIM: Oncological photodynamic therapy (PDT) relies on photosensitizers (PSs) to photo-oxidatively destroy tumor cells. Currently approved PSs yield satisfactory results in superficial and easy-to-access tumors but are less suited for solid cancers in internal organs such as the biliary system and the pancreas. For these malignancies, second-generation PSs such as metallated phthalocyanines are more appropriate. Presently it is not known which of the commonly employed metallated phtahlocyanines, namely aluminum phthalocyanine (AlPC) and zinc phthalocyanine (ZnPC) as well as their tetrasulfonated derivatives AlPCS4 and ZnPCS4, is most cytotoxic to tumor cells. This study therefore employed an attritional approach to ascertain the best metallated phthalocyanine for oncological PDT in a head-to-head comparative analysis and standardized experimental design. METHODS: ZnPC and AlPC were encapsulated in PEGylated liposomes. Analyses were performed in cultured A431 cells as a template for tumor cells with a dysfunctional P53 tumor suppressor gene and EGFR overexpression. First, dark toxicity was assessed as a function of PS concentration using the WST-1 and sulforhodamine B assay. Second, time-dependent uptake and intracellular distribution were determined by flow cytometry and confocal microscopy, respectively, using the intrinsic fluorescence of the PSs. Third, the LC50 values were established for each PS at 671 nm and a radiant exposure of 15 J/cm2 following 1-h PS exposure. Finally, the mode of cell death as a function of post-PDT time and cell cycle arrest at 24 h after PDT were analyzed. RESULTS: In the absence of illumination, AlPC and ZnPC were not toxic to cells up to a 1.5-µM PS concentration and exposure for up to 72 h. Dark toxicity was noted for AlPCS4 at 5 µM and ZnPCS4 at 2.5 µM. Uptake of all PSs was observed as early as 1 min after PS addition to cells and increased in amplitude during a 2-h incubation period. After 60 min, the entire non-nuclear space of the cell was photosensitized, with PS accumulation in multiple subcellular structures, especially in case of AlPC and AlPCS4. PDT of cells photosensitized with ZnPC, AlPC, and AlPCS4 yielded LC50 values of 0.13 µM, 0.04 µM, and 0.81 µM, respectively, 24 h post-PDT (based on sulforhodamine B assay). ZnPCS4 did not induce notable phototoxicity, which was echoed in the mode of cell death and cell cycle arrest data. At 4 h post-PDT, the mode of cell death comprised mainly apoptosis for ZnPC and AlPC, the extent of which was gradually exacerbated in AlPC-photosensitized cells during 8 h. ZnPC-treated cells seemed to recover at 8 h post-PDT compared to 4 h post-PDT, which had been observed before in another cell line. AlPCS4 induced considerable necrosis in addition to apoptosis, whereby most of the cell death had already manifested at 2 h after PDT. During the course of 8 h, necrotic cell death transitioned into mainly late apoptotic cell death. Cell death signaling coincided with a reduction in cells in the G0/G1 phase (ZnPC, AlPC, AlPCS4) and cell cycle arrest in the S-phase (ZnPC, AlPC, AlPCS4) and G2 phase (ZnPC and AlPC). Cell cycle arrest was most profound in cells that had been photosensitized with AlPC and subjected to PDT. CONCLUSIONS: Liposomal AlPC is the most potent PS for oncological PDT, whereas ZnPCS4 was photodynamically inert in A431 cells. AlPC did not induce dark toxicity at PS concentrations of up to 1.5 µM, i.e., > 37 times the LC50 value, which is favorable in terms of clinical phototoxicity issues. AlPC photosensitized multiple intracellular loci, which was associated with extensive, irreversible cell death signaling that is expected to benefit treatment efficacy and possibly immunological long-term tumor control, granted that sufficient AlPC will reach the tumor in vivo. Given the differential pharmacokinetics, intracellular distribution, and cell death dynamics, liposomal AlPC may be combined with AlPCS4 in a PS cocktail to further improve PDT efficacy.


Subject(s)
Antineoplastic Agents/chemistry , Drug Carriers/chemistry , Indoles/chemistry , Liposomes/chemistry , Photosensitizing Agents/chemistry , Antineoplastic Agents/pharmacology , Apoptosis/radiation effects , Cell Line, Tumor , Cell Membrane Permeability , Dose-Response Relationship, Radiation , Drug Liberation , Humans , Indoles/pharmacology , Isoindoles , Photochemotherapy , Photosensitizing Agents/pharmacology , Structure-Activity Relationship , Time Factors
13.
Nucleic Acids Res ; 47(17): e100, 2019 09 26.
Article in English | MEDLINE | ID: mdl-31318974

ABSTRACT

The majority of the proteins involved in processing of DNA double-strand breaks (DSBs) accumulate at the damage sites. Real-time imaging and analysis of these processes, triggered by the so-called microirradiation using UV lasers or heavy particle beams, yielded valuable insights into the underlying DSB repair mechanisms. To study the temporal organization of DSB repair responses triggered by a more clinically-relevant DNA damaging agent, we developed a system coined X-ray multi-microbeam microscope (XM3), capable of simultaneous high dose-rate (micro)irradiation of large numbers of cells with ultra-soft X-rays and imaging of the ensuing cellular responses. Using this setup, we analyzed the changes in real-time kinetics of MRE11, MDC1, RNF8, RNF168 and 53BP1-proteins involved in the signaling axis of mammalian DSB repair-in response to X-ray and UV laser-induced DNA damage, in non-cancerous and cancer cells and in the presence or absence of a photosensitizer. Our results reveal, for the first time, the kinetics of DSB signaling triggered by X-ray microirradiation and establish XM3 as a powerful platform for real-time analysis of cellular DSB repair responses.


Subject(s)
DNA Breaks, Double-Stranded , DNA Repair , DNA-Binding Proteins/metabolism , Time-Lapse Imaging/methods , X-Rays , Adaptor Proteins, Signal Transducing/metabolism , Animals , Cell Cycle Proteins/metabolism , Cell Line , Humans , MRE11 Homologue Protein , Microscopy, Electron, Scanning , Osteosarcoma/metabolism , Pigment Epithelium of Eye/metabolism , Signal Transduction , Tumor Suppressor p53-Binding Protein 1/metabolism , Ubiquitin-Protein Ligases/metabolism , Ultraviolet Rays
14.
RNA ; 25(7): 840-856, 2019 07.
Article in English | MEDLINE | ID: mdl-30988100

ABSTRACT

ZC3H12B is the most enigmatic member of the ZC3H12 protein family. The founding member of this family, Regnase-1/MCPIP1/ZC3H12A, is a well-known modulator of inflammation and is involved in the degradation of inflammatory mRNAs. In this study, for the first time, we characterized the properties of the ZC3H12B protein. We show that the biological role of ZC3H12B depends on an intact NYN/PIN RNase domain. Using RNA immunoprecipitation, experiments utilizing actinomycin D and ELISA, we show that ZC3H12B binds interleukin-6 (IL-6) mRNA in vivo, regulates its turnover, and results in reduced production of IL-6 protein upon stimulation with IL-1ß. We verified that regulation of IL-6 mRNA stability occurs via interaction of ZC3H12B with the stem-loop structure present in the IL-6 3'UTR. The IL-6 transcript is not the only target of ZC3H12B. ZC3H12B also interacts with other known substrates of Regnase-1 and ZC3H12D, such as the 3'UTRs of IER3 and Regnase-1, and binds IER3 mRNA in vivo. Using immunofluorescence, we examined the localization of ZC3H12B within the cell. ZC3H12B forms small, granule-like structures in the cytoplasm that are characteristic of proteins involved in mRNA turnover. The overexpression of ZC3H12B inhibits proliferation by stalling the cell cycle in the G2 phase. This effect of ZC3H12B is also NYN/PIN dependent. The analysis of the ZC3H12B mRNA level reveals its highest expression in the human brain and the neuroblastoma cell line SH-SY5Y, although the factors regulating its expression remain elusive. Down-regulation of ZC3H12B in SH-SY5Y cells by specific shRNAs results in up-regulation of ZC3H12B-target mRNAs.


Subject(s)
3' Untranslated Regions/genetics , Gene Expression Regulation , Interleukin-6/genetics , RNA, Messenger/metabolism , Ribonucleases/metabolism , Transcription Factors/metabolism , Amino Acid Sequence , Brain/metabolism , HeLa Cells , Humans , Interleukin-1beta/pharmacology , Interleukin-6/metabolism , Neuroblastoma/genetics , Neuroblastoma/metabolism , Neuroblastoma/pathology , Protein Domains , RNA Stability , RNA, Messenger/genetics , Ribonucleases/genetics , Sequence Homology , Transcription Factors/genetics
15.
Front Microbiol ; 9: 2034, 2018.
Article in English | MEDLINE | ID: mdl-30233521

ABSTRACT

Tuberculosis is once again a major global threat, leading to more than 1 million deaths each year. Treatment options for tuberculosis patients are limited, expensive and characterized by severe side effects, especially in the case of multidrug-resistant forms. Uncovering novel vulnerabilities of the pathogen is crucial to generate new therapeutic strategies. Using high resolution microscopy techniques, we discovered one such vulnerability of Mycobacterium tuberculosis. We demonstrate that the DNA of M. tuberculosis can condense under stressful conditions such as starvation and antibiotic treatment. The DNA condensation is reversible and specific for viable bacteria. Based on these observations, we hypothesized that blocking the recovery from the condensed state could weaken the bacteria. We showed that after inducing DNA condensation, and subsequent blocking of acetylation of DNA binding proteins, the DNA localization in the bacteria is altered. Importantly under these conditions, Mycobacterium smegmatis did not replicate and its survival was significantly reduced. Our work demonstrates that agents that block recovery from the condensed state of the nucleoid can be exploited as antibiotic. The combination of fusidic acid and inhibition of acetylation of DNA binding proteins, via the Eis enzyme, potentiate the efficacy of fusidic acid by 10 and the Eis inhibitor to 1,000-fold. Hence, we propose that successive treatment with antibiotics and drugs interfering with recovery from DNA condensation constitutes a novel approach for treatment of tuberculosis and related bacterial infections.

16.
Nucleic Acids Res ; 45(22): 12625-12637, 2017 Dec 15.
Article in English | MEDLINE | ID: mdl-29182755

ABSTRACT

Most proteins involved in the DNA double-strand break response (DSBR) accumulate at the damage sites, where they perform functions related to damage signaling, chromatin remodeling and repair. Over the last two decades, studying the accumulation of many DSBR proteins provided information about their functionality and underlying mechanisms of action. However, comparison and systemic interpretation of these data is challenging due to their scattered nature and differing experimental approaches. Here, we extracted, analyzed and compared the available results describing accumulation of 79 DSBR proteins at sites of DNA damage, which can be further explored using Cumulus (http://www.dna-repair.live/cumulus/)-the accompanying interactive online application. Despite large inter-study variability, our analysis revealed that the accumulation of most proteins starts immediately after damage induction, occurs in parallel and peaks within 15-20 min. Various DSBR pathways are characterized by distinct accumulation kinetics with major non-homologous end joining proteins being generally faster than those involved in homologous recombination, and signaling and chromatin remodeling factors accumulating with varying speeds. Our meta-analysis provides, for the first time, comprehensive overview of the temporal organization of the DSBR in mammalian cells and could serve as a reference for future mechanistic studies of this complex process.


Subject(s)
DNA Breaks, Double-Stranded , DNA Repair , DNA-Binding Proteins/metabolism , DNA/genetics , Homologous Recombination , Animals , DNA/metabolism , Humans , Kinetics , Signal Transduction
17.
J Cell Biochem ; 118(3): 487-498, 2017 03.
Article in English | MEDLINE | ID: mdl-27472830

ABSTRACT

ZC3H12D belongs to a recently discovered family of proteins containing four members of which the most studied and best described is the RNase ZC3H12A (MCPIP1/Regnase-1). ZC3H12A is a crucial negative regulator of inflammation. It accelerates the turnover of transcripts of a spectrum of proinflammatory cytokines, as well as its own mRNA. The biological role of ZC3H12D is less clear, although it was shown that this member of ZC3H12 family is also involved in the regulation of inflammation. Here, we show that ZC3H12A and ZC3H12D recognize a set of common target mRNAs encoding proteins that play important roles in the course of the inflammation. Similarly to ZC3H12A, ZC3H12D participates in the 3'UTR-dependent regulation of the turnover of mRNAs encoding interleukin-6 (IL-6), tumor necrosis factor (TNF), and immediate early response 3 gene (IER3). The ZC3H12A mRNA is also among the identified ZC3H12D targets. Using the combination of immunofluorescence with single molecule RNA fluorescence in situ hybridization (smRNA FISH) we have shown that ZC3H12D protein interacts with the ZC3H12A transcript. The direct binding of these two molecules in vivo was further confirmed by RNA immunoprecipitation. Simultaneously, overexpression of ZC3H12D increases the turnover rate of transcripts containing ZC3H12A 3'UTR. Using reporter gene assays we have confirmed that the Asp95 residue present in the NYN/PIN-like domain is crucial for ZC3H12D biological activity. We have also revealed that ZC3H12D recognizes the same structural elements present in the 3'UTRs of the investigated transcripts, as ZC3H12A. J. Cell. Biochem. 118: 487-498, 2017. © 2016 Wiley Periodicals, Inc.


Subject(s)
3' Untranslated Regions , Proteins/metabolism , RNA Stability/physiology , Ribonucleases/biosynthesis , Transcription Factors/biosynthesis , Apoptosis Regulatory Proteins/genetics , Apoptosis Regulatory Proteins/metabolism , Cell Cycle Proteins , Cell Line, Tumor , Endonucleases , Endoribonucleases , Humans , Inflammation/genetics , Inflammation/metabolism , Interleukin-6/genetics , Interleukin-6/metabolism , Membrane Proteins/genetics , Membrane Proteins/metabolism , Protein Domains , Proteins/genetics , Ribonucleases/genetics , Transcription Factors/genetics , Tumor Necrosis Factor-alpha/genetics , Tumor Necrosis Factor-alpha/metabolism
18.
Acta Biochim Pol ; 63(3): 411-5, 2016.
Article in English | MEDLINE | ID: mdl-27494113

ABSTRACT

The mechanisms regulating transcript turnover are key processes in the regulation of gene expression. The list of proteins involved in mRNAs' degradation is still growing, however, the details of RNase-mRNAs interactions are not fully understood. ZC3H12A is a recently discovered inflammation-related RNase engaged in the control of proinflammatory cytokine transcript turnover. ZC3H12A also regulates its own transcript half-live. Here, we studied the details of this regulation. Our results confirm the importance of the 3'UTR in ZC3H12A-dependent ZC3H12A mRNA degradation. We compared the mouse and human stemloop structures present in this region and discovered that the human conserved stem-loop structure is not sufficient for ZC3H12A-dependent degradation. However, this structure is important for the ZC3H12A mRNA post-transcriptional regulation. Our studies emphasize the importance of the neighboring features of the identified stem-loop structure for its biological activity. Removal of this region together with the stem-loop structure greatly inhibits the ZC3H12A regulation of the investigated 3'-untranslated region (3'UTR).


Subject(s)
RNA, Messenger/genetics , Ribonucleases/genetics , Transcription Factors/genetics , 3' Untranslated Regions , Animals , Base Sequence , Conserved Sequence , Gene Expression Regulation , Genes, Reporter , HeLa Cells , Humans , Inverted Repeat Sequences , Luciferases, Firefly/biosynthesis , Luciferases, Firefly/genetics , Mice , RNA Stability
19.
Biol Open ; 5(7): 889-98, 2016 Jul 15.
Article in English | MEDLINE | ID: mdl-27256408

ABSTRACT

MCPIP1 and IER3 are recently described proteins essential for maintenance of immune homeostasis. IER3 is involved in the regulation of apoptosis and differentiation and has been shown lately to protect activated T cells and macrophages from apoptosis. MCPIP1 is an RNase critical for controlling inflammation-related mRNAs. MCPIP1 interacts with and degrades a set of stem-loop-containing mRNAs (including IL-6). Our results demonstrate the involvement of MCPIP1 in the regulation of IER3 mRNA levels. A dual luciferase assay revealed that over-expression of MCPIP1 resulted in a decrease of luciferase activity in the samples co-transfected with constructs containing luciferase CDS attached to IER3 3'UTR. We identified a stem-loop structure similar to that described to be important for destabilization of the IL-6 mRNA by MCPIP1. Examination of IER3 3'UTR sequence, structure and evolutionary conservation revealed that the identified stem-loop is buried within a bigger element. Deletion of this fragment abolished the regulation of IER3 3'UTR-containing transcript by MCPIP1. Finally, using immunofluorescence-combined single-molecule RNA FISH we have shown that the MCPIP1 protein co-localizes with IER3 mRNA. By this method we also proved that the presence of the wild-type NYN/PIN-like domain of MCPIP1 correlated with the decreased level of IER3 mRNA. RNA immunoprecipitation further confirmed the interaction of MCPIP1 with IER3 transcripts in vivo.

20.
Biotechniques ; 59(4): 209-12, 214, 216 passim, 2015 Oct.
Article in English | MEDLINE | ID: mdl-26458549

ABSTRACT

Although the concept of combining immunofluorescence (IF) with single-molecule RNA fluorescence in situ hybridization (smRNA FISH) seems obvious, the specific materials used during IF and smRNA FISH make it difficult to perform these procedures simultaneously on the same specimen. Even though there are reports where IF and smRNA FISH were combined with success, these were insufficient in terms of signal intensities, staining patterns, and GFP-compatibility, and a detailed exploration of the various factors that influence IF and smRNA FISH outcome has not been published yet. Here, we report a detailed study of conditions and reagents used in classic IF and smRNA FISH that allowed us to establish an easy, robust, and GFP-compatible procedure. Our protocol enables simultaneous detection of mRNA and protein quantity as well as the subcellular distribution of these molecules in single cells by combining an RNase-free modification of the IF technique and the more recent smRNA FISH method. Using this procedure, we have shown the direct interaction of RNase MCPIP1 with IL-6 mRNA. We also demonstrate the use of our protocol in heterogeneous cell population analysis, revealing cell-to-cell differences in mRNA and protein content.


Subject(s)
Nanotechnology , Proteins/isolation & purification , RNA, Messenger/isolation & purification , Single-Cell Analysis , Fluorescent Antibody Technique/methods , HeLa Cells , Humans , In Situ Hybridization, Fluorescence , Interleukin-6/genetics , Interleukin-6/metabolism , Proteins/genetics , RNA, Messenger/genetics , Ribonucleases/genetics , Ribonucleases/metabolism , Transcription Factors/genetics , Transcription Factors/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL