Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 5 de 5
Filter
Add more filters










Database
Type of study
Language
Publication year range
1.
Environ Sci Pollut Res Int ; 30(43): 97253-97266, 2023 Sep.
Article in English | MEDLINE | ID: mdl-37587399

ABSTRACT

Enrofloxacin (Enro) has been widely encountered in natural water sources, and that water is often used for irrigation in crop production systems. Due to its phytotoxicity and accumulation in plant tissues, the presence of Enro in water used for crop irrigation may represent economical and toxicological concerns. Here, we irrigated two ornamental plant species (Zantedeschia rehmannii Engl. and Spathiphyllum wallisii Regel.) with water artificially contaminated with the antimicrobial enrofloxacin (Enro; 0, 5, 10, 100, and 1000 µg L-1) to evaluate its effects on ornamental plant production, as well as its accumulation and distribution among different plant organs (roots, leaves, bulbs, and flower stems), and examined the economic and environmental safety of commercializing plants produced under conditions of pharmaceutical contamination. The presence of Enro in irrigation water was not found to disrupt plant growth (biomass) or flower production. Both species accumulated Enro, with its internal concentrations distributed as the following: roots > leaves > bulbs > flower stems. In addition to plant tolerance, the content of Enro in plant organs indicated that both Z. rehmannii and S. wallisii could be safety produced under Enro-contaminated conditions and would not significantly contribute to contaminant transfer. The high capacity of those plants to accumulate Enro in their tissues, associated with their tolerance to it, indicates them for use in Enro-phytoremediation programs.


Subject(s)
Agricultural Irrigation , Biodegradation, Environmental , Enrofloxacin , Water Pollution, Chemical , Araceae/metabolism , Enrofloxacin/metabolism , Enrofloxacin/toxicity
2.
Sci Total Environ ; 892: 164309, 2023 Sep 20.
Article in English | MEDLINE | ID: mdl-37236443

ABSTRACT

Water contamination by pharmaceuticals is a global concern due to their potential negative effects on aquatic ecosystems and human health. This study examined the presence of three repositioned drugs used for COVID-19 treatment: azithromycin (AZI), ivermectin (IVE) and hydroxychloroquine (HCQ) in water samples collected from three urban rivers in Curitiba, Brazil, during August and September 2020. We conducted a risk assessment and evaluated the individual (0, 2, 4, 20, 100 and 200 µg.L-1) and combined (mix of the drugs at 2 µg.L-1) effects of the antimicrobials on the cyanobacterium Synechococcus elongatus and microalga Chlorella vulgaris. The liquid chromatography coupled to mass spectrometry results showed that AZI and IVE were present in all collected samples, while HCQ occurred in 78 % of them. In all the studied sites, the concentrations found of AZI (up to 2.85 µg.L-1) and HCQ (up to 2.97 µg.L-1) represent environmental risks for the studied species, while IVE (up to 3.2 µg.L-1) was a risk only for Chlorella vulgaris. The hazard quotients (HQ) indices demonstrated that the microalga was less sensitive to the drugs than the cyanobacteria. HCQ and IVE had the highest values of HQ for the cyanobacteria and microalga, respectively, being the most toxic drugs for each species. Interactive effects of drugs were observed on growth, photosynthesis and antioxidant activity. The treatment with AZI + IVE resulted in cyanobacteria death, while exposure to the mixture of all three drugs led to decreased growth and photosynthesis in the cells. On the other hand, no effect on growth was observed for C. vulgaris, although photosynthesis has been negatively affected by all treatments. The use of AZI, IVE and HCQ for COVID-19 treatment may have generated surface water contamination, which could increased their potential ecotoxicological effects. This raises the need to further investigation into their effects on aquatic ecosystems.


Subject(s)
COVID-19 , Chlorella vulgaris , Microalgae , Water Pollutants, Chemical , Humans , Ecosystem , COVID-19 Drug Treatment , Hydroxychloroquine/analysis , Hydroxychloroquine/pharmacology , Azithromycin/toxicity , Pharmaceutical Preparations , Water , Water Pollutants, Chemical/analysis
3.
Int J Phytoremediation ; 24(9): 995-1003, 2022.
Article in English | MEDLINE | ID: mdl-34686072

ABSTRACT

Water contamination by antibiotics is an emerging global problem, with impacts on both public health and the environment. Erythromycin has been encountered in bodies of water throughout the world, which demands the development of efficient remediation technologies. We investigated the physiological responses and phytoremediation capacity of four species of aquatic macrophytes, two floating (Salvinia molesta and Lemna minor) and two submerged (Myriophyllum aquaticum and Rotala rotundifolia). The plants were exposed to relevant environmental concentrations of erythromycin (0 and 1.7 µg l-1) in artificially contaminated water for seven days. Physiological evaluations evidenced the ability of that antibiotic to promote oxidative events in those plants, such as the activation of antioxidant enzymes (ascorbate peroxidase and/or catalase). S. molesta exposed to erythromycin demonstrated accumulations of hydrogen peroxide and oxidative damage (lipid peroxidation) that was reflected in growth reductions. The erythromycin removal efficiency of floating plants varied from 9 to 12%, while submerged species varied from 31 to 44%. As such, submerged macrophyte species demonstrated the most efficient removal of erythromycin from contaminated waters, and are therefore more indicated for antibiotic phytoremediation projects.


For the very first time, the capacities of floating and submerged plant species used for removing erythromycin from contaminated water were compared. Moreover, plant physiological responses were related to their phytoremediation capacity. Our results promise to have direct impacts on plant and environmental science as well as in toxicology since they will contribute to a better understanding of the effects of antibiotics in plants and indicate species for better performance of phytoremediation programs aiming to reclaim the antibiotic erythromycin.


Subject(s)
Araceae , Water Pollutants, Chemical , Anti-Bacterial Agents , Biodegradation, Environmental , Erythromycin , Plants , Water , Water Pollutants, Chemical/analysis
4.
Environ Sci Pollut Res Int ; 29(3): 3336-3354, 2022 Jan.
Article in English | MEDLINE | ID: mdl-34766223

ABSTRACT

Phytoremediation is an eco-friendly and economical technology in which plants are used for the removal of contaminants presents in the urban and rural environment. One of the challenges of the technique is the proper destination of the biomass of plants. In this context, the use of ornamental plants in areas under contamination treatment improves landscape, serving as a tourist option and source of income with high added value. In addition to their high stress tolerance, rapid growth, high biomass production, and good root development, ornamental species are not intended for animal and human food consumption, avoiding the introduction of contaminants into the food web in addition to improving the environments with aesthetic value. Furthermore, ornamental plants provide multiple ecosystem services, and promote human well-being, while contributing to the conservation of biodiversity. In this review, we summarized the main uses of ornamental plants in phytoremediation of contaminated soil, air, and water. We discuss the potential use of ornamental plants in constructed buffer strips aiming to mitigate the contamination of agricultural lands occurring in the vicinity of sources of contaminants. Moreover, we underlie the ecological and health benefits of the use of ornamental plants in urban and rural landscape projects. This study is expected to draw attention to a promising decontamination technology combined with the beautification of urban and rural areas as well as a possible alternative source of income and diversification in horticultural production.


Subject(s)
Ecosystem , Soil Pollutants , Biodegradation, Environmental , Biomass , Humans , Plants , Soil Pollutants/analysis
5.
Plants (Basel) ; 10(11)2021 Oct 30.
Article in English | MEDLINE | ID: mdl-34834712

ABSTRACT

We have studied the isolated and combined effects of metals (Fe and Mn) and NaCl the on growth, physiology, and metal-uptake capacity of two photosynthetic periphytic species-Synechococcus elongatus (Cyanobacteria) and Chlorococcum infusionum (Chlorophyta)-isolated from an impacted area of the Rio Doce River (Brazil) after the Fundão dam collapse. The effective concentrations found to reduce 10 and 50% growth were 15.2 and 31.6 mg Fe L-1, and 2.5 and 7.9 mg Mn L-1 for S. elongatus and 53.9 and 61.6 mg Fe L-1, and 53.2 and 60.9 mg Mn L-1 for C. infusionum. Although the metal toxicity was related to oxidative stress, both species showed activation of antioxidant systems under phytotoxic concentrations of Fe and Mn. By binding large concentrations of metals on its cell surface and thus avoiding their entrance into the cells, C. infusionum presents greater resistance to Fe and Mn than S. elongatus. Under environmental realistic concentrations of Fe and Mn in river water from the Rio Doce Basin, S. elongatus and C. infusionum showed a metal removal efficiency of 42 and 65% and 53 and 79%, respectively after 96 h. These species were insensitive to increased NaCl concentrations which, in addition, did not disrupt the metal removal capacity of the species. Due to their salt and metal tolerance, S. elongatus and C. infusionum can be used for the remediation of waters contaminated with Fe and Mn.

SELECTION OF CITATIONS
SEARCH DETAIL
...