Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 34
Filter
Add more filters










Publication year range
1.
Sci Immunol ; 9(92): eadi0042, 2024 Feb 02.
Article in English | MEDLINE | ID: mdl-38306418

ABSTRACT

Familial hemophagocytic lymphohistiocytosis (FHL) is an inherited, often fatal immune deficiency characterized by severe systemic hyperinflammation. Although allogeneic bone marrow transplantation can be curative, more effective therapies are urgently needed. FHL is caused by inactivating mutations in proteins that regulate cellular immunity. Here, we used an adeno-associated virus-based CRISPR-Cas9 system with an inhibitor of nonhomologous end joining to repair such mutations in potentially long-lived T cells ex vivo. Repaired CD8 memory T cells efficiently cured lethal hyperinflammation in a mouse model of Epstein-Barr virus-triggered FHL2, a subtype caused by perforin-1 (Prf1) deficiency. Furthermore, repair of PRF1 and Munc13-4 (UNC13D)-whose deficiency causes the FHL subtype FHL3-in mutant memory T cells from two critically ill patients with FHL restored T cell cytotoxicity. These results provide a starting point for the treatment of genetic T cell immune dysregulation syndromes with repaired autologous T cells.


Subject(s)
Epstein-Barr Virus Infections , Lymphohistiocytosis, Hemophagocytic , Animals , Mice , Humans , Lymphohistiocytosis, Hemophagocytic/genetics , Lymphohistiocytosis, Hemophagocytic/therapy , CRISPR-Cas Systems , Epstein-Barr Virus Infections/genetics , Epstein-Barr Virus Infections/therapy , Memory T Cells , Herpesvirus 4, Human , Membrane Proteins/genetics
2.
Mol Syst Biol ; 19(10): 1-23, 2023 10.
Article in English | MEDLINE | ID: mdl-38778223

ABSTRACT

RNA abundance is tightly regulated in eukaryotic cells by modulating the kinetic rates of RNA production, processing, and degradation. To date, little is known about time­dependent kinetic rates during dynamic processes. Here, we present SLAM­Drop­seq, a method that combines RNA metabolic labeling and alkylation of modified nucleotides in methanol­fixed cells with droplet­based sequencing to detect newly synthesized and preexisting mRNAs in single cells. As a first application, we sequenced 7280 HEK293 cells and calculated gene­specific kinetic rates during the cell cycle using the novel package Eskrate. Of the 377 robust­cycling genes that we identified, only a minor fraction is regulated solely by either dynamic transcription or degradation (6 and 4%, respectively). By contrast, the vast majority (89%) exhibit dynamically regulated transcription and degradation rates during the cell cycle. Our study thus shows that temporally regulated mRNA degradation is fundamental for the correct expression of a majority of cycling genes. SLAM­Drop­seq, combined with Eskrate, is a powerful approach to understanding the underlying mRNA kinetics of single­cell gene expression dynamics in continuous biological processes.


Subject(s)
Cell Cycle , RNA, Messenger , RNA, Messenger/genetics , RNA, Messenger/metabolism , Cell Cycle/genetics , Kinetics , Sequence Analysis, RNA/methods , Humans
3.
Front Immunol ; 14: 1331730, 2023.
Article in English | MEDLINE | ID: mdl-38169736

ABSTRACT

Introduction: Epstein-Barr virus (EBV) infection in humans is associated with a wide range of diseases including malignancies of different origins, most prominently B cells. Several EBV latent genes are thought to act together in B cell immortalization, but a minimal set of EBV genes sufficient for transformation remains to be identified. Methods: Here, we addressed this question by transducing human peripheral B cells from EBV-negative donors with retrovirus expressing the latent EBV genes encoding Latent Membrane Protein (LMP) 1 and 2A and Epstein-Barr Nuclear Antigen (EBNA) 2. Results: LMP1 together with EBNA2, but not LMP1 alone or in combination with LMP2A was able to transform human primary B cells. LMP1/EBNA2-immortalized cell lines shared surface markers with EBV-transformed lymphoblastoid cell lines (LCLs). They showed sustained growth for more than 60 days, albeit at a lower growth rate than EBV-transformed LCLs. LMP1/EBNA2-immortalized cell lines generated tumors when transplanted subcutaneously into severely immunodeficient NOG mice. Conclusion: Our results identify a minimal set of EBV proteins sufficient for B cell transformation.


Subject(s)
Epstein-Barr Virus Infections , Humans , Animals , Mice , Herpesvirus 4, Human/genetics , Herpesvirus 4, Human/metabolism , Epstein-Barr Virus Nuclear Antigens/genetics , Viral Proteins/metabolism , B-Lymphocytes , Cell Transformation, Neoplastic/genetics
4.
Genome Med ; 14(1): 103, 2022 09 09.
Article in English | MEDLINE | ID: mdl-36085050

ABSTRACT

BACKGROUND: Acute kidney injury (AKI) occurs frequently in critically ill patients and is associated with adverse outcomes. Cellular mechanisms underlying AKI and kidney cell responses to injury remain incompletely understood. METHODS: We performed single-nuclei transcriptomics, bulk transcriptomics, molecular imaging studies, and conventional histology on kidney tissues from 8 individuals with severe AKI (stage 2 or 3 according to Kidney Disease: Improving Global Outcomes (KDIGO) criteria). Specimens were obtained within 1-2 h after individuals had succumbed to critical illness associated with respiratory infections, with 4 of 8 individuals diagnosed with COVID-19. Control kidney tissues were obtained post-mortem or after nephrectomy from individuals without AKI. RESULTS: High-depth single cell-resolved gene expression data of human kidneys affected by AKI revealed enrichment of novel injury-associated cell states within the major cell types of the tubular epithelium, in particular in proximal tubules, thick ascending limbs, and distal convoluted tubules. Four distinct, hierarchically interconnected injured cell states were distinguishable and characterized by transcriptome patterns associated with oxidative stress, hypoxia, interferon response, and epithelial-to-mesenchymal transition, respectively. Transcriptome differences between individuals with AKI were driven primarily by the cell type-specific abundance of these four injury subtypes rather than by private molecular responses. AKI-associated changes in gene expression between individuals with and without COVID-19 were similar. CONCLUSIONS: The study provides an extensive resource of the cell type-specific transcriptomic responses associated with critical illness-associated AKI in humans, highlighting recurrent disease-associated signatures and inter-individual heterogeneity. Personalized molecular disease assessment in human AKI may foster the development of tailored therapies.


Subject(s)
Acute Kidney Injury , COVID-19 , Acute Kidney Injury/genetics , COVID-19/genetics , Critical Illness , Humans , Kidney , Transcriptome
5.
Kidney Int ; 102(6): 1359-1370, 2022 12.
Article in English | MEDLINE | ID: mdl-36049643

ABSTRACT

Acute kidney injury (AKI) is a major health issue, the outcome of which depends primarily on damage and reparative processes of tubular epithelial cells. Mechanisms underlying AKI remain incompletely understood, specific therapies are lacking and monitoring the course of AKI in clinical routine is confined to measuring urine output and plasma levels of filtration markers. Here we demonstrate feasibility and potential of a novel approach to assess the cellular and molecular dynamics of AKI by establishing a robust urine-to-single cell RNA sequencing (scRNAseq) pipeline for excreted kidney cells via flow cytometry sorting. We analyzed 42,608 single cell transcriptomes of 40 urine samples from 32 patients with AKI and compared our data with reference material from human AKI post-mortem biopsies and published mouse data. We demonstrate that tubular epithelial cells transcriptomes mirror kidney pathology and reflect distinct injury and repair processes, including oxidative stress, inflammation, and tissue rearrangement. We also describe an AKI-specific abundant urinary excretion of adaptive progenitor-like cells. Thus, single cell transcriptomics of kidney cells excreted in urine provides noninvasive, unprecedented insight into cellular processes underlying AKI, thereby opening novel opportunities for target identification, AKI sub-categorization, and monitoring of natural disease course and interventions.


Subject(s)
Acute Kidney Injury , Humans , Mice , Animals , Acute Kidney Injury/pathology , Kidney/pathology , Biomarkers/urine , Oxidative Stress , Epithelial Cells/pathology
6.
Front Immunol ; 13: 1083119, 2022.
Article in English | MEDLINE | ID: mdl-36685499

ABSTRACT

Introduction: The differentiation of B cells into antibody-secreting plasma cells depends on cell division-coupled, epigenetic and other cellular processes that are incompletely understood. Methods: We have developed a CRISPR/Cas9-based screen that models an early stage of T cell-dependent plasma cell differentiation and measures B cell survival or proliferation versus the formation of CD138+ plasmablasts. Here, we refined and extended this screen to more than 500 candidate genes that are highly expressed in plasma cells. Results: Among known genes whose deletion preferentially or mostly affected plasmablast formation were the transcription factors Prdm1 (BLIMP1), Irf4 and Pou2af1 (OBF-1), and the Ern1 gene encoding IRE1a, while deletion of XBP1, the transcriptional master regulator that specifies the expansion of the secretory program in plasma cells, had no effect. Defective plasmablast formation caused by Ern1 deletion could not be rescued by the active, spliced form of XBP1 whose processing is dependent on and downstream of IRE1a, suggesting that in early plasma cell differentiation IRE1a acts independently of XBP1. Moreover, we newly identified several genes involved in NF-kB signaling (Nfkbia), vesicle trafficking (Arf4, Preb) and epigenetic regulators that form part of the NuRD complex (Hdac1, Mta2, Mbd2) to be required for plasmablast formation. Deletion of ARF4, a small GTPase required for COPI vesicle formation, impaired plasmablast formation and blocked antibody secretion. After Hdac1 deletion plasmablast differentiation was consistently reduced by about 50%, while deletion of the closely related Hdac2 gene had no effect. Hdac1 knock-out led to strongly perturbed protein expression of antagonistic transcription factors that govern plasma cell versus B cell identity (by decreasing IRF4 and BLIMP1 and increasing BACH2 and PAX5). Discussion: Taken together, our results highlight specific and non-redundant roles for Ern1, Arf4 and Hdac1 in the early steps of plasma cell differentiation.


Subject(s)
B-Lymphocytes , CRISPR-Cas Systems , Plasma Cells , Cell Differentiation/genetics , Antibodies
7.
J Vis Exp ; (175)2021 09 20.
Article in English | MEDLINE | ID: mdl-34605813

ABSTRACT

The kidneys regulate diverse biological processes such as water, electrolyte, and acid-base homeostasis. Physiological functions of the kidney are executed by multiple cell types arranged in a complex architecture across the corticomedullary axis of the organ. Recent advances in single-cell transcriptomics have accelerated the understanding of cell type-specific gene expression in renal physiology and disease. However, enzyme-based tissue dissociation protocols, which are frequently utilized for single-cell RNA-sequencing (scRNA-seq), require mostly fresh (non-archived) tissue, introduce transcriptional stress responses, and favor the selection of abundant cell types of the kidney cortex resulting in an underrepresentation of cells of the medulla. Here, we present a protocol that avoids these problems. The protocol is based on nuclei isolation at 4 °C from frozen kidney tissue. Nuclei are isolated from a central piece of the mouse kidney comprised of the cortex, outer medulla, and inner medulla. This reduces the overrepresentation of cortical cells typical for whole-kidney samples for the benefit of medullary cells such that data will represent the entire corticomedullary axis at sufficient abundance. The protocol is simple, rapid, and adaptable and provides a step towards the standardization of single-nuclei transcriptomics in kidney research.


Subject(s)
Cell Nucleus , Transcriptome , Animals , Kidney , Mice , RNA , Sequence Analysis, RNA
8.
J Am Soc Nephrol ; 32(2): 291-306, 2021 02.
Article in English | MEDLINE | ID: mdl-33239393

ABSTRACT

BACKGROUND: Single-cell transcriptomes from dissociated tissues provide insights into cell types and their gene expression and may harbor additional information on spatial position and the local microenvironment. The kidney's cells are embedded into a gradient of increasing tissue osmolality from the cortex to the medulla, which may alter their transcriptomes and provide cues for spatial reconstruction. METHODS: Single-cell or single-nuclei mRNA sequencing of dissociated mouse kidneys and of dissected cortex, outer, and inner medulla, to represent the corticomedullary axis, was performed. Computational approaches predicted the spatial ordering of cells along the corticomedullary axis and quantitated expression levels of osmo-responsive genes. In situ hybridization validated computational predictions of spatial gene-expression patterns. The strategy was used to compare single-cell transcriptomes from wild-type mice to those of mice with a collecting duct-specific knockout of the transcription factor grainyhead-like 2 (Grhl2CD-/-), which display reduced renal medullary osmolality. RESULTS: Single-cell transcriptomics from dissociated kidneys provided sufficient information to approximately reconstruct the spatial position of kidney tubule cells and to predict corticomedullary gene expression. Spatial gene expression in the kidney changes gradually and osmo-responsive genes follow the physiologic corticomedullary gradient of tissue osmolality. Single-nuclei transcriptomes from Grhl2CD-/- mice indicated a flattened expression gradient of osmo-responsive genes compared with control mice, consistent with their physiologic phenotype. CONCLUSIONS: Single-cell transcriptomics from dissociated kidneys facilitated the prediction of spatial gene expression along the corticomedullary axis and quantitation of osmotically regulated genes, allowing the prediction of a physiologic phenotype.


Subject(s)
Kidney Cortex/metabolism , Kidney Cortex/pathology , Kidney Medulla/metabolism , Kidney Medulla/pathology , Transcriptome , Animals , Disease Models, Animal , Gene Expression Regulation , In Situ Hybridization , Kidney Tubules/metabolism , Kidney Tubules/pathology , Mice , Mice, Inbred C57BL , Osmolar Concentration
9.
Front Immunol ; 11: 602868, 2020.
Article in English | MEDLINE | ID: mdl-33343574

ABSTRACT

A highly recurrent somatic L265P mutation in the TIR domain of the signaling adapter MYD88 constitutively activates NF-κB. It occurs in nearly all human patients with Waldenström's macroglobulinemia (WM), a B cell malignancy caused by IgM-expressing cells. Here, we introduced an inducible leucine to proline point mutation into the mouse Myd88 locus, at the orthologous position L252P. When the mutation was introduced early during B cell development, B cells developed normally. However, IgM-expressing plasma cells accumulated with age in spleen and bone, leading to more than 20-fold elevated serum IgM titers. When introduced into germinal center B cells in the context of an immunization, the Myd88L252P mutation caused prolonged persistence of antigen-specific serum IgM and elevated numbers of antigen-specific IgM plasma cells. Myd88L252P-expressing B cells switched normally, but plasma cells expressing other immunoglobulin isotypes did not increase in numbers, implying that IgM expression may be required for the observed cellular expansion. In order to test whether the Myd88L252P mutation can cause clonal expansions, we introduced it into a small fraction of CD19-positive B cells. In this scenario, five out of five mice developed monoclonal IgM serum paraproteins accompanied by an expansion of clonally related plasma cells that expressed mostly hypermutated VDJ regions. Taken together, our data suggest that the Myd88L252P mutation is sufficient to promote aberrant survival and expansion of IgM-expressing plasma cells which in turn can cause IgM monoclonal gammopathy of undetermined significance (MGUS), the premalignant condition that precedes WM.


Subject(s)
B-Lymphocytes/metabolism , Gene Targeting , Immunoglobulin M/blood , Monoclonal Gammopathy of Undetermined Significance/genetics , Myeloid Differentiation Factor 88/genetics , Plasma Cells/metabolism , Point Mutation , Animals , B-Lymphocytes/immunology , Cell Proliferation , Cell Survival , Cells, Cultured , Genetic Predisposition to Disease , Immunoglobulin M/immunology , Lymphocyte Activation , Mice, Inbred C57BL , Monoclonal Gammopathy of Undetermined Significance/blood , Monoclonal Gammopathy of Undetermined Significance/immunology , Myeloid Differentiation Factor 88/metabolism , Paraproteins/metabolism , Phenotype , Plasma Cells/immunology
10.
Mol Ther ; 28(12): 2621-2634, 2020 12 02.
Article in English | MEDLINE | ID: mdl-32822592

ABSTRACT

Severe congenital neutropenia (SCN) is a monogenic disorder. SCN patients are prone to recurrent life-threatening infections. The main causes of SCN are autosomal dominant mutations in the ELANE gene that lead to a block in neutrophil differentiation. In this study, we use CRISPR-Cas9 ribonucleoproteins and adeno-associated virus (AAV)6 as a donor template delivery system to repair the ELANEL172P mutation in SCN patient-derived hematopoietic stem and progenitor cells (HSPCs). We used a single guide RNA (sgRNA) specifically targeting the mutant allele, and an sgRNA targeting exon 4 of ELANE. Using the latter sgRNA, ∼34% of the known ELANE mutations can in principle be repaired. We achieved gene correction efficiencies of up to 40% (with sgELANE-ex4) and 56% (with sgELANE-L172P) in the SCN patient-derived HSPCs. Gene repair restored neutrophil differentiation in vitro and in vivo upon HSPC transplantation into humanized mice. Mature edited neutrophils expressed normal elastase levels and behaved normally in functional assays. Thus, we provide a proof of principle for using CRISPR-Cas9 to correct ELANE mutations in patient-derived HSPCs, which may translate into gene therapy for SCN.


Subject(s)
CRISPR-Cas Systems/genetics , Congenital Bone Marrow Failure Syndromes/therapy , Genetic Therapy/methods , Hematopoietic Stem Cell Transplantation/methods , Leukocyte Elastase/genetics , Mutation , Neutropenia/congenital , Alleles , Animals , Cell Differentiation/genetics , Congenital Bone Marrow Failure Syndromes/genetics , Congenital Bone Marrow Failure Syndromes/pathology , Exons , Granulocyte-Macrophage Colony-Stimulating Factor/genetics , Granulocyte-Macrophage Colony-Stimulating Factor/metabolism , HEK293 Cells , Humans , Interleukin-3/genetics , Interleukin-3/metabolism , Mice , Mice, Transgenic , Neutropenia/genetics , Neutropenia/pathology , Neutropenia/therapy , Neutrophils/metabolism , RNA, Guide, Kinetoplastida/genetics , Transfection , Treatment Outcome
11.
Nat Commun ; 11(1): 991, 2020 02 20.
Article in English | MEDLINE | ID: mdl-32080185

ABSTRACT

Characterizing the complex composition of solid tumors is fundamental for understanding tumor initiation, progression and metastasis. While patient-derived samples provide valuable insight, they are heterogeneous on multiple molecular levels, and often originate from advanced tumor stages. Here, we use single-cell transcriptome and epitope profiling together with pathway and lineage analyses to study tumorigenesis from a developmental perspective in a mouse model of salivary gland squamous cell carcinoma. We provide a comprehensive cell atlas and characterize tumor-specific cells. We find that these cells are connected along a reproducible developmental trajectory: initiated in basal cells exhibiting an epithelial-to-mesenchymal transition signature, tumorigenesis proceeds through Wnt-differential cancer stem cell-like subpopulations before differentiating into luminal-like cells. Our work provides unbiased insights into tumor-specific cellular identities in a whole tissue environment, and emphasizes the power of using defined genetic model systems.


Subject(s)
Carcinogenesis/genetics , Carcinogenesis/pathology , Animals , Carcinogenesis/immunology , Carcinoma, Squamous Cell/genetics , Carcinoma, Squamous Cell/immunology , Carcinoma, Squamous Cell/pathology , Cell Differentiation/genetics , Cell Differentiation/immunology , Cell Lineage/genetics , Cell Lineage/immunology , Cell Transformation, Neoplastic/genetics , Cell Transformation, Neoplastic/immunology , Cell Transformation, Neoplastic/pathology , Epithelial-Mesenchymal Transition/genetics , Epithelial-Mesenchymal Transition/immunology , Gene Expression Profiling , Mice , Mice, Inbred C57BL , Mice, Transgenic , Neoplastic Stem Cells/classification , Neoplastic Stem Cells/immunology , Neoplastic Stem Cells/pathology , RNA, Messenger/genetics , RNA-Seq , Salivary Gland Neoplasms/genetics , Salivary Gland Neoplasms/immunology , Salivary Gland Neoplasms/pathology , Single-Cell Analysis , Tumor Microenvironment/genetics , Tumor Microenvironment/immunology
12.
Nat Commun ; 10(1): 5776, 2019 12 18.
Article in English | MEDLINE | ID: mdl-31852888

ABSTRACT

Skeletal muscle stem cells, called satellite cells and defined by the transcription factor PAX7, are responsible for postnatal muscle growth, homeostasis and regeneration. Attempts to utilize the regenerative potential of muscle stem cells for therapeutic purposes so far failed. We previously established the existence of human PAX7-positive cell colonies with high regenerative potential. We now identified PAX7-negative human muscle-derived cell colonies also positive for the myogenic markers desmin and MYF5. These include cells from a patient with a homozygous PAX7 c.86-1G > A mutation (PAX7null). Single cell and bulk transcriptome analysis show high intra- and inter-donor heterogeneity and reveal the endothelial cell marker CLEC14A to be highly expressed in PAX7null cells. All PAX7-negative cell populations, including PAX7null, form myofibers after transplantation into mice, and regenerate muscle after reinjury. Transplanted PAX7neg cells repopulate the satellite cell niche where they re-express PAX7, or, strikingly, CLEC14A. In conclusion, transplanted human cells do not depend on PAX7 for muscle regeneration.


Subject(s)
Cell Adhesion Molecules/physiology , Lectins, C-Type/physiology , Muscle, Skeletal/physiology , PAX7 Transcription Factor/genetics , Regeneration , Satellite Cells, Skeletal Muscle/physiology , Wasting Syndrome/genetics , Animals , Biopsy , Child, Preschool , Consanguinity , Female , Human Umbilical Vein Endothelial Cells , Humans , Male , Mice , Muscle, Skeletal/cytology , Muscle, Skeletal/injuries , Mutation , PAX7 Transcription Factor/metabolism , Primary Cell Culture , Satellite Cells, Skeletal Muscle/transplantation , Single-Cell Analysis , Transplantation, Heterologous/methods , Wasting Syndrome/therapy , Exome Sequencing
13.
Genes Dev ; 33(23-24): 1673-1687, 2019 12 01.
Article in English | MEDLINE | ID: mdl-31699777

ABSTRACT

Knockout of the ubiquitously expressed miRNA-17∼92 cluster in mice produces a lethal developmental lung defect, skeletal abnormalities, and blocked B lymphopoiesis. A shared target of miR-17∼92 miRNAs is the pro-apoptotic protein BIM, central to life-death decisions in mammalian cells. To clarify the contribution of miR-17∼92:Bim interactions to the complex miR-17∼92 knockout phenotype, we used a system of conditional mutagenesis of the nine Bim 3' UTR miR-17∼92 seed matches. Blocking miR-17∼92:Bim interactions early in development phenocopied the lethal lung phenotype of miR-17∼92 ablation and generated a skeletal kinky tail. In the hematopoietic system, instead of causing the predicted B cell developmental block, it produced a selective inability of B cells to resist cellular stress; and prevented B and T cell hyperplasia caused by Bim haploinsufficiency. Thus, the interaction of miR-17∼92 with a single target is essential for life, and BIM regulation by miRNAs serves as a rheostat controlling cell survival in specific physiological contexts.


Subject(s)
B-Lymphocytes/cytology , Bcl-2-Like Protein 11/metabolism , Cell Survival/genetics , Gene Expression Regulation, Developmental/genetics , Hematopoiesis/genetics , MicroRNAs/metabolism , 3' Untranslated Regions/genetics , Animals , B-Lymphocytes/pathology , Bcl-2-Like Protein 11/genetics , Gene Knockout Techniques , Lung/embryology , Mice , MicroRNAs/genetics , Mutation , Stress, Physiological
14.
Nat Commun ; 10(1): 4878, 2019 10 25.
Article in English | MEDLINE | ID: mdl-31653857

ABSTRACT

Herpesvirus infection initiates a range of perturbations in the host cell, which remain poorly understood at the level of individual cells. Here, we quantify the transcriptome of single human primary fibroblasts during the first hours of lytic infection with HSV-1. By applying a generalizable analysis scheme, we define a precise temporal order of early viral gene expression and propose a set-wise emergence of viral genes. We identify host cell genes and pathways relevant for infection by combining three different computational approaches: gene and pathway overdispersion analysis, prediction of cell-state transition probabilities, as well as future cell states. One transcriptional program, which correlates with increased resistance to infection, implicates the transcription factor NRF2. Consequently, Bardoxolone methyl and Sulforaphane, two known NRF2 agonists, impair virus production, suggesting that NRF2 activation restricts viral infection. Our study provides insights into early stages of HSV-1 infection and serves as a general blueprint for the investigation of heterogeneous cell states in virus infection.


Subject(s)
Fibroblasts/metabolism , Herpes Simplex/genetics , Herpesvirus 1, Human , Host-Pathogen Interactions/genetics , NF-E2-Related Factor 2/genetics , Fibroblasts/virology , Gene Expression Profiling , Gene Regulatory Networks , Humans , Isothiocyanates/pharmacology , NF-E2-Related Factor 2/agonists , Oleanolic Acid/analogs & derivatives , Oleanolic Acid/pharmacology , Primary Cell Culture , Sequence Analysis, RNA , Single-Cell Analysis , Sulfoxides , Virus Replication/drug effects
15.
J Am Soc Nephrol ; 29(8): 2060-2068, 2018 08.
Article in English | MEDLINE | ID: mdl-29794128

ABSTRACT

Background Three different cell types constitute the glomerular filter: mesangial cells, endothelial cells, and podocytes. However, to what extent cellular heterogeneity exists within healthy glomerular cell populations remains unknown.Methods We used nanodroplet-based highly parallel transcriptional profiling to characterize the cellular content of purified wild-type mouse glomeruli.Results Unsupervised clustering of nearly 13,000 single-cell transcriptomes identified the three known glomerular cell types. We provide a comprehensive online atlas of gene expression in glomerular cells that can be queried and visualized using an interactive and freely available database. Novel marker genes for all glomerular cell types were identified and supported by immunohistochemistry images obtained from the Human Protein Atlas. Subclustering of endothelial cells revealed a subset of endothelium that expressed marker genes related to endothelial proliferation. By comparison, the podocyte population appeared more homogeneous but contained three smaller, previously unknown subpopulations.Conclusions Our study comprehensively characterized gene expression in individual glomerular cells and sets the stage for the dissection of glomerular function at the single-cell level in health and disease.


Subject(s)
Endothelial Cells/metabolism , Gene Expression Profiling , Kidney Glomerulus/physiology , Mesangial Cells/metabolism , Podocytes/metabolism , Sequence Analysis, RNA , Animals , Cells, Cultured , Gene Expression Regulation , Kidney Glomerulus/cytology , Male , Mice , Mice, Inbred Strains , Reference Values
16.
Science ; 360(6391)2018 05 25.
Article in English | MEDLINE | ID: mdl-29674432

ABSTRACT

Flatworms of the species Schmidtea mediterranea are immortal-adult animals contain a large pool of pluripotent stem cells that continuously differentiate into all adult cell types. Therefore, single-cell transcriptome profiling of adult animals should reveal mature and progenitor cells. By combining perturbation experiments, gene expression analysis, a computational method that predicts future cell states from transcriptional changes, and a lineage reconstruction method, we placed all major cell types onto a single lineage tree that connects all cells to a single stem cell compartment. We characterized gene expression changes during differentiation and discovered cell types important for regeneration. Our results demonstrate the importance of single-cell transcriptome analysis for mapping and reconstructing fundamental processes of developmental and regenerative biology at high resolution.


Subject(s)
Atlases as Topic , Cell Lineage/genetics , Cells/classification , Gene Expression Profiling/methods , Planarians/cytology , Single-Cell Analysis/methods , Animals , Cell Differentiation/genetics , Cells/metabolism , Planarians/genetics , Planarians/metabolism , Pluripotent Stem Cells/cytology , Pluripotent Stem Cells/metabolism , Regeneration/genetics , Transcriptome
17.
Methods Mol Biol ; 1724: 77-96, 2018.
Article in English | MEDLINE | ID: mdl-29322442

ABSTRACT

Individual mRNA molecules can be imaged in fixed cells by hybridization with multiple, singly labeled oligonucleotide probes, followed by computational identification of fluorescent signals. This approach, called single-molecule RNA fluorescence in situ hybridization (smRNA FISH), allows subcellular localization and absolute quantification of RNA molecules in individual cells. Here, we describe a simple smRNA FISH protocol for two-color imaging of a circular RNA, CDR1as, simultaneously with an unrelated messenger RNA. The protocol can be adapted to circRNAs that coexist with overlapping, noncircular mRNA isoforms produced from the same genetic locus.


Subject(s)
Gene Expression Regulation , In Situ Hybridization, Fluorescence/methods , RNA, Long Noncoding/genetics , RNA/genetics , Single-Cell Analysis/methods , Humans , RNA, Circular
18.
Genome Biol ; 18(1): 209, 2017 10 31.
Article in English | MEDLINE | ID: mdl-29089033

ABSTRACT

BACKGROUND: Herpesviruses can infect a wide range of animal species. Herpes simplex virus 1 (HSV-1) is one of the eight herpesviruses that can infect humans and is prevalent worldwide. Herpesviruses have evolved multiple ways to adapt the infected cells to their needs, but knowledge about these transcriptional and post-transcriptional modifications is sparse. RESULTS: Here, we show that HSV-1 induces the expression of about 1000 antisense transcripts from the human host cell genome. A subset of these is also activated by the closely related varicella zoster virus. Antisense transcripts originate either at gene promoters or within the gene body, and they show different susceptibility to the inhibition of early and immediate early viral gene expression. Overexpression of the major viral transcription factor ICP4 is sufficient to turn on a subset of antisense transcripts. Histone marks around transcription start sites of HSV-1-induced and constitutively transcribed antisense transcripts are highly similar, indicating that the genetic loci are already poised to transcribe these novel RNAs. Furthermore, an antisense transcript overlapping with the BBC3 gene (also known as PUMA) transcriptionally silences this potent inducer of apoptosis in cis. CONCLUSIONS: We show for the first time that a virus induces widespread antisense transcription of the host cell genome. We provide evidence that HSV-1 uses this to downregulate a strong inducer of apoptosis. Our findings open new perspectives on global and specific alterations of host cell transcription by viruses.


Subject(s)
Genome, Human , Herpes Simplex/virology , Herpesvirus 1, Human/physiology , Host-Pathogen Interactions/genetics , RNA, Antisense/genetics , Transcription, Genetic , Apoptosis Regulatory Proteins/genetics , Apoptosis Regulatory Proteins/metabolism , Gene Expression Regulation, Viral/drug effects , HeLa Cells , Histone Code , Host-Pathogen Interactions/drug effects , Humans , Lipopolysaccharides/pharmacology , Monocytes/drug effects , Monocytes/metabolism , NF-kappa B/metabolism , Promoter Regions, Genetic/genetics , Proto-Oncogene Proteins/genetics , Proto-Oncogene Proteins/metabolism , RNA, Antisense/metabolism , RNA, Messenger/genetics , RNA, Messenger/metabolism , Reproducibility of Results , Sequence Analysis, RNA , Transcription, Genetic/drug effects , Viral Proteins/metabolism
19.
Science ; 358(6360): 194-199, 2017 10 13.
Article in English | MEDLINE | ID: mdl-28860209

ABSTRACT

By the onset of morphogenesis, Drosophila embryos consist of about 6000 cells that express distinct gene combinations. Here, we used single-cell sequencing of precisely staged embryos and devised DistMap, a computational mapping strategy to reconstruct the embryo and to predict spatial gene expression approaching single-cell resolution. We produced a virtual embryo with about 8000 expressed genes per cell. Our interactive Drosophila Virtual Expression eXplorer (DVEX) database generates three-dimensional virtual in situ hybridizations and computes gene expression gradients. We used DVEX to uncover patterned expression of transcription factors and long noncoding RNAs, as well as signaling pathway components. Spatial regulation of Hippo signaling during early embryogenesis suggests a mechanism for establishing asynchronous cell proliferation. Our approach is suitable to generate transcriptomic blueprints for other complex tissues.


Subject(s)
Drosophila melanogaster/embryology , Drosophila melanogaster/genetics , Embryo, Nonmammalian/cytology , Single-Cell Analysis/methods , Transcriptome , Animals , Cell Communication , Drosophila Proteins/genetics , In Situ Hybridization , Intracellular Signaling Peptides and Proteins/genetics , Protein Serine-Threonine Kinases/genetics , Signal Transduction/genetics
20.
Science ; 357(6357)2017 09 22.
Article in English | MEDLINE | ID: mdl-28798046

ABSTRACT

Hundreds of circular RNAs (circRNAs) are highly abundant in the mammalian brain, often with conserved expression. Here we show that the circRNA Cdr1as is massively bound by the microRNAs (miRNAs) miR-7 and miR-671 in human and mouse brains. When the Cdr1as locus was removed from the mouse genome, knockout animals displayed impaired sensorimotor gating-a deficit in the ability to filter out unnecessary information-which is associated with neuropsychiatric disorders. Electrophysiological recordings revealed dysfunctional synaptic transmission. Expression of miR-7 and miR-671 was specifically and posttranscriptionally misregulated in all brain regions analyzed. Expression of immediate early genes such as Fos, a direct miR-7 target, was enhanced in Cdr1as-deficient brains, providing a possible molecular link to the behavioral phenotype. Our data indicate an in vivo loss-of-function circRNA phenotype and suggest that interactions between Cdr1as and miRNAs are important for normal brain function.


Subject(s)
Brain/physiology , MicroRNAs/metabolism , RNA Processing, Post-Transcriptional , RNA, Long Noncoding/metabolism , RNA/metabolism , Animals , Behavior, Animal , Brain/metabolism , CRISPR-Cas Systems , Genetic Loci , Humans , Mice , Mice, Knockout , RNA Stability , RNA, Circular , RNA, Long Noncoding/genetics , Up-Regulation
SELECTION OF CITATIONS
SEARCH DETAIL
...