Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters










Database
Language
Publication year range
1.
Nat Commun ; 13(1): 6446, 2022 10 28.
Article in English | MEDLINE | ID: mdl-36307401

ABSTRACT

The filtration of blood in the kidney which is crucial for mammalian life is determined by the slit-diaphragm, a cell-cell junction between the foot processes of renal podocytes. The slit-diaphragm is thought to operate as final barrier or as molecular sensor of renal filtration. Using high-resolution proteomic analysis of slit-diaphragms affinity-isolated from rodent kidney, we show that the native slit-diaphragm is built from the junction-forming components Nephrin, Neph1 and Podocin and a co-assembled high-molecular weight network of proteins. The network constituents cover distinct classes of proteins including signaling-receptors, kinases/phosphatases, transporters and scaffolds. Knockout or knock-down of either the core components or the selected network constituents tyrosine kinase MER (MERTK), atrial natriuretic peptide-receptor C (ANPRC), integral membrane protein 2B (ITM2B), membrane-associated guanylate-kinase, WW and PDZ-domain-containing protein1 (MAGI1) and amyloid protein A4 resulted in target-specific impairment or disruption of the filtration process. Our results identify the slit-diaphragm as a multi-component system that is endowed with context-dependent dynamics via a co-assembled protein network.


Subject(s)
Diaphragm , Podocytes , Animals , Proteomics , Podocytes/metabolism , Kidney Glomerulus , Intercellular Junctions , Mammals
2.
Neuron ; 104(4): 680-692.e9, 2019 11 20.
Article in English | MEDLINE | ID: mdl-31604597

ABSTRACT

Excitatory neurotransmission and its activity-dependent plasticity are largely determined by AMPA-receptors (AMPARs), ion channel complexes whose cell physiology is encoded by their interactome. Here, we delineate the assembly of AMPARs in the endoplasmic reticulum (ER) of native neurons as multi-state production line controlled by distinct interactome constituents: ABHD6 together with porcupine stabilizes pore-forming GluA monomers, and the intellectual-disability-related FRRS1l-CPT1c complexes promote GluA oligomerization and co-assembly of GluA tetramers with cornichon and transmembrane AMPA-regulatory proteins (TARP) to render receptor channels ready for ER exit. Disruption of the assembly line by FRRS1l deletion largely reduces AMPARs in the plasma membrane, impairs synapse formation, and abolishes activity-dependent synaptic plasticity, while FRRS1l overexpression has the opposite effect. As a consequence, FRSS1l knockout mice display severe deficits in learning tasks and behavior. Our results provide mechanistic insight into the stepwise biogenesis of AMPARs in native ER membranes and establish FRRS1l as a powerful regulator of synaptic signaling and plasticity.


Subject(s)
Endoplasmic Reticulum/metabolism , Membrane Proteins/metabolism , Nerve Tissue Proteins/metabolism , Neuronal Plasticity/physiology , Receptors, AMPA/metabolism , Synaptic Transmission/physiology , Animals , Membrane Proteins/deficiency , Mice , Mice, Knockout , Nerve Tissue Proteins/deficiency , Neurons/metabolism
3.
Cell Cycle ; 14(11): 1748-58, 2015.
Article in English | MEDLINE | ID: mdl-25695757

ABSTRACT

The mammalian E3 ubiquitin ligases RNF8 and RNF168 facilitate recruitment of the DNA damage response protein 53BP1 to sites of DNA double-strand breaks (DSBs). The mechanism involves recruitment of RNF8, followed by recruitment of RNF168, which ubiquitinates histones H2A/H2AX on K15. 53BP1 then binds to nucleosomes at sites of DNA DSBs by recognizing, in addition to methyl marks, histone H2A/H2AX ubiquitinated on K15. We report here that expressing H2AX fusion proteins with N-terminal bulky moieties can rescue 53BP1 recruitment to sites of DNA DSBs in cells lacking RNF8 or RNF168 or in cells treated with proteasome inhibitors, in which histone ubiquitination at sites of DNA DSBs is compromised. The rescue required S139 at the C-terminus of the H2AX fusion protein and was occasionally accompanied by partial rescue of ubiquitination at sites of DNA DSBs. We conclude that recruitment of 53BP1 to sites of DNA DSBs is possible in the absence of RNF8 or RNF168, but still dependent on chromatin ubiquitination.


Subject(s)
DNA Damage/genetics , Histones/metabolism , Intracellular Signaling Peptides and Proteins/metabolism , Models, Biological , Ubiquitin/metabolism , Cell Line , DNA Damage/physiology , DNA-Binding Proteins/metabolism , Fluorescent Antibody Technique , Gene Knockout Techniques , Humans , Immunoblotting , Recombinant Fusion Proteins/metabolism , Rosaniline Dyes , Tumor Suppressor p53-Binding Protein 1 , Ubiquitin-Protein Ligases/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL
...