Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters











Database
Language
Publication year range
1.
J Chem Theory Comput ; 17(11): 7281-7289, 2021 Nov 09.
Article in English | MEDLINE | ID: mdl-34663069

ABSTRACT

Transmembrane proteins (TMPs) are critical components of cellular life. However, due to experimental challenges, the number of experimentally resolved TMP structures is severely underrepresented in databases compared to their cellular abundance. Prediction of (per-residue) features such as transmembrane topology, membrane exposure, secondary structure, and solvent accessibility can be a useful starting point for experimental design or protein structure prediction but often requires different computational tools for different features or types of proteins. We present TopProperty, a metapredictor that predicts all of these features for TMPs or globular proteins. TopProperty is trained on datasets without bias toward a high number of sequence homologs, and the predictions are significantly better than the evaluated state-of-the-art primary predictors on all quality metrics. TopProperty eliminates the need for protein type- or feature-tailored tools, specifically for TMPs. TopProperty is freely available as a web server and standalone at https://cpclab.uni-duesseldorf.de/topsuite/.


Subject(s)
Neural Networks, Computer , Algorithms , Computational Biology , Databases, Protein , Membrane Proteins , Protein Structure, Secondary
2.
J Chem Theory Comput ; 17(7): 4599-4613, 2021 Jul 13.
Article in English | MEDLINE | ID: mdl-34161735

ABSTRACT

Protein domains are independent, functional, and stable structural units of proteins. Accurate protein domain boundary prediction plays an important role in understanding protein structure and evolution, as well as for protein structure prediction. Current domain boundary prediction methods differ in terms of boundary definition, methodology, and training databases resulting in disparate performance for different proteins. We developed TopDomain, an exhaustive metapredictor, that uses deep neural networks to combine multisource information from sequence- and homology-based features of over 50 primary predictors. For this purpose, we developed a new domain boundary data set termed the TopDomain data set, in which the true annotations are informed by SCOPe annotations, structural domain parsers, human inspection, and deep learning. We benchmark TopDomain against 2484 targets with 3354 boundaries from the TopDomain test set and achieve F1 scores of 78.4% and 73.8% for multidomain boundary prediction within ±20 residues and ±10 residues of the true boundary, respectively. When examined on targets from CASP11-13 competitions, TopDomain achieves F1 scores of 47.5% and 42.8% for multidomain proteins. TopDomain significantly outperforms 15 widely used, state-of-the-art ab initio and homology-based domain boundary predictors. Finally, we implemented TopDomainTMC, which accurately predicts whether domain parsing is necessary for the target protein.


Subject(s)
Deep Learning , Protein Domains , Algorithms , Computational Biology/methods , Protein Conformation , Proteins/chemistry
3.
J Chem Inf Model ; 61(2): 548-553, 2021 02 22.
Article in English | MEDLINE | ID: mdl-33464891

ABSTRACT

Proteins carry out the most fundamental processes of life such as cellular metabolism, regulation, and communication. Understanding these processes at a molecular level requires knowledge of their three-dimensional structures. Experimental techniques such as X-ray crystallography, NMR spectroscopy, and cryogenic electron microscopy can resolve protein structures but are costly and time-consuming and do not work for all proteins. Computational protein structure prediction tries to overcome these problems by predicting the structure of a new protein using existing protein structures as a resource. Here we present TopSuite, a web server for protein model quality assessment (TopScore) and template-based protein structure prediction (TopModel). TopScore provides meta-predictions for global and residue-wise model quality estimation using deep neural networks. TopModel predicts protein structures using a top-down consensus approach to aid the template selection and subsequently uses TopScore to refine and assess the predicted structures. The TopSuite Web server is freely available at https://cpclab.uni-duesseldorf.de/topsuite/.


Subject(s)
Deep Learning , Crystallography, X-Ray , Neural Networks, Computer , Protein Conformation , Proteins , Software
SELECTION OF CITATIONS
SEARCH DETAIL