Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 78
Filter
Add more filters










Publication year range
1.
J Med Chem ; 67(6): 4322-4345, 2024 Mar 28.
Article in English | MEDLINE | ID: mdl-38457829

ABSTRACT

Photochemistry has emerged as a transformative force in organic chemistry, significantly expanding the chemical space accessible for medicinal chemistry. Light-induced reactions enable the efficient synthesis of intricate organic structures and have found applications throughout the different stages of the drug discovery and development processes. Moreover, photochemical techniques provide innovative solutions in chemical biology, allowing precise spatiotemporal drug activation and targeted delivery. In this Perspective, we highlight the already numerous remarkable applications and the even more promising future of photochemistry in medicinal chemistry and chemical biology.


Subject(s)
Chemistry, Pharmaceutical , Drug Discovery , Photochemistry , Chemistry, Pharmaceutical/methods , Drug Discovery/methods , Biology
2.
Science ; 383(6682): 498-503, 2024 Feb 02.
Article in English | MEDLINE | ID: mdl-38301027

ABSTRACT

The Pauson-Khand reaction has in the past 50 years become one of the most common cycloaddition reactions in chemistry. Coupling two unsaturated bonds with carbon monoxide, the transformation remains limited to CO as a C1 building block. Herein we report analogous cycloaddition reactions with nitrenes as an N1 unit. The reaction of a nonconjugated diene with a nitrene precursor produces bicyclic bioisosteres of common saturated heterocycles such as piperidine, morpholine, and piperazine. Experimental and computational mechanistic studies support relaying of the diradical nature of triplet nitrene into the π-system. We showcase the reaction's utility in late-stage functionalization of drug compounds and discovery of soluble epoxide hydrolase inhibitors.

3.
Angew Chem Int Ed Engl ; 62(48): e202312031, 2023 Nov 27.
Article in English | MEDLINE | ID: mdl-37772673

ABSTRACT

The azoxy functional group is an important structural motif and represents the formally oxidized counterpart of the azo group. Azoxy compounds find numerous applications ranging from pharmaceuticals to functional materials, yet their synthesis remains underdeveloped with a main focus on the formation symmetric azoxy compounds. To overcome challenges in the synthesis of such unsymmetric azoxy compounds, we designed a process employing readily accessible nitroso compounds and iminoiodinanes. This method builds on the use of visible light irradiation to generate a triplet nitrene from iminoiodinanes, which is trapped by nitroso arenes to give access to sulfonyl-protected azoxy compounds with a good substrate scope and functional group tolerance. We further describe two applications of these sulfonyl-protected azoxy compounds as radical precursors in synthesis, where the whole azoxy group can be transferred and employed in C(sp3 )-H functionalization of ethers or 1,2-difunctionalization of vinyl ethers. All of the reactions occurred at room temperature under visible light irradiation without the addition of any photoredox catalysts and additives. Control experiments, mechanism investigations, and DFT studies well explained the observed reactivity.

4.
Angew Chem Int Ed Engl ; 62(42): e202309947, 2023 Oct 16.
Article in English | MEDLINE | ID: mdl-37649245

ABSTRACT

A photocatalytic self-(3+2) cycloaddition of vinyldiazo compounds is described, which provides cyclopentene derivatives with conservation of one diazo functional group. Experimental insights and density functional theory indicate that the reaction is triggered by an unusual single electron oxidation of vinyldiazo compounds, while the photolysis for the generation of free carbene species is not involved. The synthetic applications of the resulting cyclopentenyl α-diazo compounds were demonstrated based on the rich chemistry of the diazo functional group.

5.
Angew Chem Int Ed Engl ; 62(40): e202309184, 2023 Oct 02.
Article in English | MEDLINE | ID: mdl-37506274

ABSTRACT

The control of the reactivity of diazo compounds is commonly achieved by the choice of a suitable catalyst, e.g. via stabilization of singlet carbenes or radical intermediates. Herein, we report on the light-promoted reactivity of cyclic diazo imides with thiols, where the choice of solvent results in two fundamentally different reaction pathways. In dichloromethane (DCM), a carbene is formed initially and engages in a cascade C-H functionalization/thiolation reaction to deliver indane-fused pyrrolidines in good to excellent yields. When switching to acetonitrile solvent, the carbene pathway is shut down and an unusual reduction of the diazo compound occurs under otherwise identical reaction conditions, where the aryl thiol acts as reductant. A combined set of experimental and computational studies was carried out to obtain mechanistic understanding and to support that indane formation proceeds via the insertion of a triplet carbene, while the reduction of diazo imides proceeds via an electron transfer process.

6.
Chemistry ; 29(29): e202300214, 2023 May 22.
Article in English | MEDLINE | ID: mdl-36872887

ABSTRACT

The C-H functionalization of indole heterocycles constitutes a key strategy to leverage the synthesis of endogenous signaling molecules such as tryptamine or tryptophol. Herein, we report on the photocatalytic reaction of ethyl diazoacetate with indole, which shows an unusual solvent dependency. While C2-functionalization occurs under protic conditions, the use of aprotic solvents leads to a complete reversal of selectivity and exclusive C3-functionalization occurs. To rationalize for this unexpected reactivity switch, we have conducted detailed theoretical and experimental studies, which suggest the participation of a triplet carbene intermediate that undergoes initial C2-functionalization. A distinct cationic [1,2]-alkyl radical migration then leads to formation of C3-functionalized indole. We conclude with the application of this photocatalytic reaction to access oxidized tryptophol derivatives including gram-scale synthesis and derivatization reactions.

7.
Nat Commun ; 14(1): 1109, 2023 Feb 27.
Article in English | MEDLINE | ID: mdl-36849502

ABSTRACT

The synthesis and characterization of organic compounds with unusual atom or functional group connectivity is one of the main driving forces in the discovery of new synthetic methods that has raised the interest of chemists for many years. Polycarbonyl compounds are such compounds wherein multiple carbonyl groups are directly juxtaposed and influence each other's chemical reactivity. While 1,2-dicarbonyl or 1,2,3-tricarbonyl compounds are well-known in organic chemistry, the 1,2,3,4-tetracarbonyl motif remains barely explored. Herein, we report on the synthesis of such 1,2,3,4-tetracarbonyl compounds employing a synthetic strategy that involves C-nitrosation of enoldiazoacetates, while the diazo functional group remains untouched. This strategy not only leverages the synthesis of 1,2,3,4-tetracarbonyl compounds to an unprecedented level, it also accomplishes the synthesis of 1,2,3,4-tetracarbonyl compounds, wherein each carbonyl group is orthogonally masked. Combined experimental and theoretical studies provide an understanding of the reaction mechanism and rationalize the formation of such 1,2,3,4-tetracarbonyl compounds.

8.
Org Lett ; 25(1): 169-173, 2023 01 13.
Article in English | MEDLINE | ID: mdl-36602193

ABSTRACT

Cyclopropane-fused lactones are highly desirable in drug and natural products synthesis. Herein, we report on a photochemical, chemoselective reaction of aryldiazoacetates with allylic alcohols that furnishes cyclopropane-fused lactone skeletons efficiently in one step. The diastereoselectivity of the protocol was precisely controlled, and chemoselective cyclopropanation of allylic alcohols via free carbene intermediate followed by transesterification constitutes a series of bicyclic lactones in high yield without the formation of ether byproducts via typical O-H insertion reactions.


Subject(s)
Cyclopropanes , Propanols , Stereoisomerism , Propanols/chemistry , Cyclopropanes/chemistry , Lactones/chemistry , Alcohols/chemistry
9.
Chem Sci ; 13(44): 13141-13146, 2022 Nov 16.
Article in English | MEDLINE | ID: mdl-36425480

ABSTRACT

The reactivity of diazoalkanes most commonly proceeds through the formation of carbene intermediates or dipolar cycloaddition reactions. The reaction of diazoalkanes with intermediates with unpaired electrons, however, is much less elaborated. Herein, we report on the photochemical reaction of acceptor-only diazoalkanes with azodicarboxylates. Photoexcitation of the latter results in the formation of a triplet species, which undergoes an addition reaction with diazoalkanes and formation of an azomethine ylide followed by dipolar cycloaddition reaction with organic nitriles to give a 1,2,4-triazole. The application of this transformation was elaborated in a broad and general substrate scope (48 examples), including scale-up via flow chemistry and downstream transformations. Experimental and computational studies were performed to elucidate the reaction mechanism and to rationalize the reaction outcome.

10.
Org Lett ; 24(48): 8753-8758, 2022 12 09.
Article in English | MEDLINE | ID: mdl-36440861

ABSTRACT

The unprecedented photochemical late-stage defluorinative gem-difluoroallylation of aryl sulfonium salts, which are formed site-selectively by direct C(sp2)─H functionalization, is herein disclosed. This method is distinguished by its mild reaction conditions, wide scope, and excellent site-selectivity. As showcase examples, a Flurbiprofen and Pyriproxyfen derivatives could be late stage C(sp2)─H gem-difluoroallylated with high yields. Experimental and computational investigations were conducted.

11.
Chem Commun (Camb) ; 58(54): 7526-7529, 2022 Jul 05.
Article in English | MEDLINE | ID: mdl-35703319

ABSTRACT

We report on the photocatalytic 1,2-difunctionalization reaction of styrenes with acceptor-only diazoalkanes. In the presence of DABCO and tBuOOH, the carbene reactivity of diazoalkanes can be suppressed and a 1,2 oxo-alkylation reaction can be achieved (32 examples, up to 94% yield) without the formation of cyclopropane by-products via the formation of radical intermediates from ethyl diazoacetate.

12.
J Org Chem ; 87(10): 6832-6837, 2022 May 20.
Article in English | MEDLINE | ID: mdl-35500213

ABSTRACT

In this computational study, we provide a detailed analysis of the underlying reaction mechanism and show that a singlet carbene is initially formed. Depending on the pKA of the alcohol, this singlet carbene can engage in direct protonation or enol formation to yield the O-H functionalization product. On the contrary, propargylic alcohols take up a dual role and form a complex with the carbene intermediate that leads to facile cyclopropenation reactions.

13.
Org Lett ; 24(11): 2232-2237, 2022 Mar 25.
Article in English | MEDLINE | ID: mdl-35274531

ABSTRACT

Herein we report a site-selective cyclopropanation of N-heterocyclic carbene (NHC)-borane complexes via photochemical carbene transfer reactions. By subtle changes to the reaction conditions, this approach can be further extended toward the difunctionalization of NHC-boranes via cyclopropanation and the B-H insertion reaction. Further investigations in photochemical continuous-flow applications and synthetic transformations proved the utility of the method. Theoretical calculations and control experiments were performed to explain the observed selectivity.

14.
Angew Chem Int Ed Engl ; 61(31): e202201743, 2022 08 01.
Article in English | MEDLINE | ID: mdl-35344253

ABSTRACT

C-H functionalization represents one of the most rapidly advancing areas in organic synthesis and is regarded as one of the key concepts to minimize the ecological and economic footprint of organic synthesis. The ubiquity and low reactivity of C-H bonds in organic molecules, however, poses several challenges, and often necessitates harsh reaction conditions to achieve this goal, although it is highly desirable to achieve C-H functionalization reactions under mild conditions. Recently, several reports uncovered a conceptually new approach towards C-H functionalization, where a single transition-metal complex can be used as both the photosensitizer and catalyst to promote C-H bond functionalization in the absence of an exogeneous photosensitizer. In this Minireview, we will provide an overview on recent achievements in C-H functionalization reactions, with an emphasis on the photochemical modulation of the reaction mechanism using such catalysts.


Subject(s)
Coordination Complexes , Transition Elements , Catalysis , Metals , Photosensitizing Agents , Transition Elements/chemistry
15.
Chem Commun (Camb) ; 58(17): 2788-2798, 2022 Feb 24.
Article in English | MEDLINE | ID: mdl-35113088

ABSTRACT

Photochemistry has recently attracted the interest of synthetic chemists to conduct photolysis reactions of diazoalkanes. In this feature article, we provide a concise overview on this field, starting with discoveries in physical organic chemistry and then discuss examples in organic synthesis of singlet carbene intermediates, ranging from classic reactivity towards advances in cascade reactions and unusual protonation reactions under photochemical conditions. We then commence with a discussion on the electronic control of singlet and triplet carbene intermediates and last discuss the advances that have been made with regards to the reaction of weakly colored diazoalkanes in dye-sensitized reactions to access radical or triplet carbene intermediates.

16.
Chemistry ; 28(12): e202104321, 2022 Feb 24.
Article in English | MEDLINE | ID: mdl-35015327

ABSTRACT

In this combined computational and experimental study, the C-H functionalization of 2-phenyl pyridine with diazoalkanes was investigated. Initial evaluation by computational methods allowed the evaluation of different metal catalysts and diazoalkanes and their compatibility in this C-H functionalization reaction. With these findings, suitable reaction conditions for the C-H methylation reactions were quickly identified by using highly reactive TMS diazomethane and C-H alkylation reactions with donor/acceptor diazoalkanes, which is applied to a broad scope on alkylation reactions of 2-aryl pyridines with TMS diazomethane and donor/acceptor diazoalkane (51 examples, up to 98 % yield).

17.
Nat Commun ; 13(1): 86, 2022 Jan 10.
Article in English | MEDLINE | ID: mdl-35013210

ABSTRACT

Nitrene transfer reactions represent one of the key reactions to rapidly construct new carbon-nitrogen bonds and typically require transition metal catalysts to control the reactivity of the pivotal nitrene intermediate. Herein, we report on the application of iminoiodinanes in amination reactions under visible light photochemical conditions. While a triplet nitrene can be accessed under catalyst-free conditions, the use of a suitable photosensitizer allows the access of a nitrene radical anion. Computational and mechanistic studies rationalize the access and reactivity of triplet nitrene and nitrene radical anion and allow the direct comparison of both amination reagents. We conclude with applications of both reagents in organic synthesis and showcase their reactivity in the reaction with olefins, which underline their markedly distinct reactivity. Both reagents can be accessed under mild reaction conditions at room temperature without the necessity to exclude moisture or air, which renders these metal-free, photochemical amination reactions highly practical.

18.
Angew Chem Int Ed Engl ; 61(13): e202117366, 2022 Mar 21.
Article in English | MEDLINE | ID: mdl-34985790

ABSTRACT

Synthetic chemists have learned to mimic nature in using hydrogen bonds and other weak interactions to dictate the spatial arrangement of reaction substrates and to stabilize transition states to enable highly efficient and selective reactions. The activation of a catalyst molecule itself by hydrogen-bonding networks, in order to enhance its catalytic activity to achieve a desired reaction outcome, is less explored in organic synthesis, despite being a commonly found phenomenon in nature. Herein, we show our investigation into this underexplored area by studying the promotion of carbonyl-olefin metathesis reactions by hydrogen-bonding-assisted Brønsted acid catalysis, using hexafluoroisopropanol (HFIP) solvent in combination with para-toluenesulfonic acid (pTSA). Our experimental and computational mechanistic studies reveal not only an interesting role of HFIP solvent in assisting pTSA Brønsted acid catalyst, but also insightful knowledge about the current limitations of the carbonyl-olefin metathesis reaction.

19.
Chemistry ; 28(15): e202104397, 2022 Mar 10.
Article in English | MEDLINE | ID: mdl-35060651

ABSTRACT

The formal alkylation reaction of OH groups with diazoalkanes under catalyst-free reaction conditions finds broad application in organic synthesis. However, even today, this reaction is mainly limited to the use of diazomethane as reaction partner. In this combined experimental and theoretical study, we aim at a fundamental understanding of the reaction of diazoalkanes with alcohols to make this transformation amenable to a generalized approach towards formal alkylation reactions of alcohols with diazoalkanes. Experimental and theoretical studies suggest a direct proton transfer only in exceptional cases. In a more general setting, such O-H functionalization proceed both under dark and photochemical conditions via a key hydrogen-bonded singlet carbene intermediate that undergoes a protonation-addition mechanism. We conclude with applications of this approach in O-H functionalization reactions of alcohols, including simple fluorinated, halogenated and aliphatic alcohols and showcase functional-group tolerance of this method in the reaction of biologically active and pharmaceutically relevant alcohols.

20.
Angew Chem Int Ed Engl ; 61(4): e202111892, 2022 Jan 21.
Article in English | MEDLINE | ID: mdl-34716734

ABSTRACT

The photolysis of diazoalkanes to conduct singlet carbene transfer reactions of colored diazoalkanes has recently attracted significant interest in organic synthesis. Herein, we describe a photocatalytic approach that allows the access of triplet carbene intermediates via energy transfer to conduct highly efficient gem-difluoroolefination reactions with α-trifluoromethyl styrenes. The use of a tertiary amines proved pivotal to unlock this unusual reaction pathway and to prevent undesired cyclopropanation pathways. The amine further facilitates the ultimate abstraction of fluoride to yield gem-difluoroolefins (43 examples, up to 88 % yield), which is supported by experimental and theoretical mechanistic studies. We explored this synthesis method with a broad substrate scope, ranging from simple olefins and heterocyclic olefins towards the decoration of pharmaceutically relevant building blocks.

SELECTION OF CITATIONS
SEARCH DETAIL
...