Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 17 de 17
Filter
Add more filters










Publication year range
1.
Trop Med Infect Dis ; 7(9)2022 Aug 23.
Article in English | MEDLINE | ID: mdl-36136615

ABSTRACT

In recent decades, we have seen the emergence and re-emergence of many arthropod-transmitted viruses (arboviruses) that pose important public health challenges worldwide [...].

2.
Insect Biochem Mol Biol ; 146: 103797, 2022 07.
Article in English | MEDLINE | ID: mdl-35640811

ABSTRACT

The haematophagy process by arthropods has been one of the main targets of studies in the parasite-host interaction, and the kissing-bug Rhodnius prolixus, vector of the protozoan Trypanosoma cruzi, has been one of the main models for such studies. Still in the 1980s, it was identified that among the salivary proteins for disrupting vertebrate host homeostasis, lipocalins were among the most relevant proteins for this process. Since then, 30 lipocalins have been identified in the salivary glands of R. prolixus, that promotes vasodilatation, prevents inflammation, act as anticoagulants and inhibits platelet aggregation. The present work aims to identify new lipocalins from R. prolixus, combining transcriptome and genome data. Identified new genes were mapped and had their structure annotated. To infer an evolutionary relationship between lipocalins, and to support the predicted functions for each lipocalin, all amino acid sequences were used to construct phylogenetic trees. We identified a total of 29 new lipocalins, 3 new bioaminogenic-biding proteins (which act to inhibit platelet aggregation and vasodilation), 9 new inhibitors of platelet aggregation, 7 new apolipoproteins and 10 lipocalins with no putative function. In addition, we observed that several of the lipocalins are also expressed in different R. prolxius tissues, including gut, central nervous system, antennae, and reproductive organs. In addition to newly identified lipocalins and a mapping the new and old lipocalins in the genome of R. prolixus, our study also carried out a review on functional status and nomenclature of some of the already identified lipocalins. Our study reinforces that we are far from understanding the role of lipocalins in the physiology of R. prolixus, and that studies of this family are still of great relevance.


Subject(s)
Chagas Disease , Rhodnius , Animals , Insect Vectors/genetics , Lipocalins/genetics , Phylogeny , Rhodnius/chemistry , Rhodnius/genetics
3.
Ticks Tick Borne Dis ; 12(1): 101562, 2021 01.
Article in English | MEDLINE | ID: mdl-33011439

ABSTRACT

The active locomotion of ticks is directly associated with the epidemiology of tick-borne diseases, as it has important implications for the interaction of ticks with their hosts and their dispersion in the environment. In an attempt to elucidate the factors involved in the dispersion of Amblyomma sculptum, the present work aimed to characterize different aspects of the active locomotion of A. sculptum nymphs under laboratory conditions. To this end, nymphs were placed on a string at a 70° inclination and their walking activity was recorded daily along with their survival period. During their lifetime, ticks walked an average of 110 m. Their locomotion was not in a straight line and nymphs changed direction 142 times throughout their lifetimes. The mean distance walked per experimental day was 1.8 m, while the average walking distance before changing direction was 52 cm. The distance walked per experimental day reduced over time. The survival of ticks was affected by walking; resting nymphs survived for over 6 months, while the survival of those that walked daily was reduced to approximately 62 days. The results showed that A. sculptum nymphs were able to cover distances of over 100 m throughout their lifetimes, but they walked short distances at a time and constantly changed direction. This behavior indicates that ticks are not able to disperse over long distances by means of active locomotion.


Subject(s)
Amblyomma/physiology , Amblyomma/growth & development , Animals , Locomotion , Longevity , Nymph/growth & development , Nymph/physiology
4.
Front Immunol ; 11: 611104, 2020.
Article in English | MEDLINE | ID: mdl-33633731

ABSTRACT

Amblyomma sculptum is the main tick associated with human bites in Brazil and the main vector of Rickettsia rickettsii, the causative agent of the most severe form of Brazilian spotted fever. Molecules produced in the salivary glands are directly related to feeding success and vector competence. In the present study, we identified sequences of A. sculptum salivary proteins that may be involved in hematophagy and selected three proteins that underwent functional characterization and evaluation as vaccine antigens. Among the three proteins selected, one contained a Kunitz_bovine pancreatic trypsin inhibitor domain (named AsKunitz) and the other two belonged to the 8.9 kDa and basic tail families of tick salivary proteins (named As8.9kDa and AsBasicTail). Expression of the messenger RNA (mRNA) encoding all three proteins was detected in the larvae, nymphs, and females at basal levels in unfed ticks and the expression levels increased after the start of feeding. Recombinant proteins rAs8.9kDa and rAsBasicTail inhibited the enzymatic activity of factor Xa, thrombin, and trypsin, whereas rAsKunitz inhibited only thrombin activity. All three recombinant proteins inhibited the hemolysis of both the classical and alternative pathways; this is the first description of tick members of the Kunitz and 8.9kDa families being inhibitors of the classical complement pathway. Mice immunization with recombinant proteins caused efficacies against A. sculptum females from 59.4% with rAsBasicTail immunization to more than 85% by immunization with rAsKunitz and rAs8.9kDa. The mortality of nymphs fed on immunized mice reached 70-100%. Therefore, all three proteins are potential antigens with the possibility of becoming a new tool in the control of A. sculptum.


Subject(s)
Amblyomma/immunology , Arthropod Proteins/administration & dosage , Saliva/immunology , Tick Infestations/prevention & control , Vaccines/administration & dosage , Amblyomma/genetics , Animals , Arthropod Proteins/genetics , Arthropod Proteins/immunology , Disease Models, Animal , Host-Parasite Interactions , Immunization , Mice , Parasite Egg Count , Tick Infestations/immunology , Tick Infestations/parasitology , Vaccines/genetics , Vaccines/immunology , Vaccines, Synthetic/administration & dosage , Vaccines, Synthetic/genetics , Vaccines, Synthetic/immunology
5.
PLoS One ; 14(9): e0219523, 2019.
Article in English | MEDLINE | ID: mdl-31479460

ABSTRACT

Whole mitogenome sequences (mtDNA) have been exploited for insect ecology studies, using them as molecular markers to reconstruct phylogenies, or to infer phylogeographic relationships and gene flow. Recent Anopheles phylogenomic studies have provided information regarding the time of deep lineage divergences within the genus. Here we report the complete 15,393 bp mtDNA sequences of Anopheles aquasalis, a Neotropical human malaria vector. When comparing its structure and base composition with other relevant and available anopheline mitogenomes, high similarity and conserved genomic features were observed. Furthermore, 22 mtDNA sequences comprising anopheline and Dipteran sibling species were analyzed to reconstruct phylogenies and estimate dates of divergence between taxa. Phylogenetic analysis using complete mtDNA sequences suggests that A. aquasalis diverged from the Anopheles albitarsis complex ~28 million years ago (MYA), and ~38 MYA from Anopheles darlingi. Bayesian analysis suggests that the most recent ancestor of Nyssorhynchus and Anopheles + Cellia was extant ~83 MYA, corroborating current estimates of ~79-100 MYA. Additional sampling and publication of African, Asian, and North American anopheline mitogenomes would improve the resolution of the Anopheles phylogeny and clarify early continental dispersal routes.


Subject(s)
Anopheles/classification , Anopheles/genetics , Genome, Mitochondrial , Genomics , Phylogeny , Phylogeography , Animals , Base Composition , Computational Biology/methods , Evolution, Molecular , Genomics/methods , Humans , Molecular Sequence Annotation , Mosquito Vectors/classification , Mosquito Vectors/genetics , Sequence Analysis, DNA , Whole Genome Sequencing
6.
Sci Rep ; 9(1): 6764, 2019 05 01.
Article in English | MEDLINE | ID: mdl-31043627

ABSTRACT

Ornithodoros rostratus is a South American argasid tick which importance relies on its itchy bite and potential as disease vector. They feed on a wide variety of hosts and secrete different molecules in their saliva and intestinal content that counteract host defences and help to accommodate and metabolize the relatively large quantity of blood upon feeding. The present work describes the transcriptome profile of salivary gland (SG) and midgut (MG) of O. rostratus using Illumina sequencing. A total of 8,031 contigs were assembled and assigned to different functional classes. Secreted proteins were the most abundant in the SG and accounted for ~67% of all expressed transcripts with contigs with identity to lipocalins and acid tail proteins being the most representative. On the other hand, immunity genes were upregulated in MG with a predominance of defensins and lysozymes. Only 10 transcripts in SG and 8 in MG represented ~30% of all RNA expressed in each tissue and one single contig (the acid tail protein ORN-9707) represented ~7% of all expressed contigs in SG. Results highlight the functional difference of each organ and identified the most expressed classes and contigs of O. rostratus SG and MG.


Subject(s)
Arthropod Proteins/metabolism , Ornithodoros/metabolism , Proteome/analysis , RNA-Seq/methods , Salivary Glands/metabolism , Salivary Proteins and Peptides/metabolism , Transcriptome , Animals , Arthropod Proteins/genetics , Computational Biology , Evolution, Molecular , Ornithodoros/genetics , Ornithodoros/growth & development , Phylogeny , Salivary Proteins and Peptides/genetics
7.
J Wildl Dis ; 55(2): 462-466, 2019 04.
Article in English | MEDLINE | ID: mdl-30475659

ABSTRACT

Philornis is a neotropical genus of muscid fly that interacts with birds and may affect the development and survival of the birds' offspring. Although Philornis is a relatively common parasite, there is a lack of information about Philornis hosts in several parts of the Americas. In this study, two nests of the Rufousfronted Thornbird ( Phacellodomus rufifrons) were collected in Pedro Leopoldo, southeast Brazil. The first contained four nestlings of advanced age (about 20 d old) and a recently emerged Philornis torquans female adult fly. The second nest contained three nestlings (less than 7 d old) and several Philornis torquans subcutaneous larvae. One of the nestlings was infested by 53 larvae, which had attacked several parts of its body and caused individual wounds containing 1 to more than 15 larvae. The length of the larvae ranged from 3 to 18 mm and only one was a second instar; the remaining 69 were third instars. The pupal period lasted 9-13 d. In total, 71 larvae were collected from the nest, with nestling parasitism varying from 7 to 53 larvae (mean- 23.7±25.5 larvae/nestling).


Subject(s)
Bird Diseases/parasitology , Birds/parasitology , Diptera/classification , Myiasis/veterinary , Aging , Animals , Bird Diseases/epidemiology , Brazil/epidemiology , Larva , Myiasis/epidemiology , Myiasis/parasitology , Pupa
8.
PLoS Negl Trop Dis ; 12(9): e0006785, 2018 09.
Article in English | MEDLINE | ID: mdl-30248099

ABSTRACT

Innate immunity is an ancient and conserved defense system that provides an early effective response against invaders. Many immune genes of Anopheles mosquitoes have been implicated in defense against a variety of pathogens, including plasmodia. Nevertheless, only recent work identified some immune genes of Anopheles aquasalis mosquitoes upon P. vivax infection. Among these was a GATA transcription factor gene, which is described here. This is an ortholog of GATA factor Serpent genes described in Drosophila melanogaster and Anopheles gambiae. Gene expression analyses showed an increase of GATA-Serpent mRNA in P. vivax-infected A. aquasalis and functional RNAi experiments identified this transcription factor as an important immune gene of A. aquasalis against both bacteria and P. vivax. Besides, we were able to identify an effect of GATA-Serpent knockdown on A. aquasalis hemocyte proliferation and differentiation. These findings expand our understanding of the poorly studied A. aquasalis-P. vivax interactions and uncover GATA-Serpent as a key player of the mosquito innate immune response.


Subject(s)
Anopheles/immunology , Bacteria/immunology , GATA Transcription Factors/metabolism , Immunity, Innate , Plasmodium/immunology , Animals , Anopheles/genetics , Cell Differentiation , Cell Proliferation , Female , GATA Transcription Factors/genetics , Gene Expression Profiling , Gene Silencing , Hemocytes/immunology , Hemocytes/physiology
9.
BMC Genomics ; 17: 100, 2016 Feb 09.
Article in English | MEDLINE | ID: mdl-26861771

ABSTRACT

BACKGROUND: Due to an abundance of repetitive DNA, the annotation of heterochromatic regions of the genome such as the Y chromosome is problematic. The Y chromosome is involved in key biological functions such as male-fertility and sex-determination and hence, accurate identification of its sequences is vital. The hemipteran insect Rhodnius prolixus is an important vector of Chagas disease, a trypanosomiasis affecting 6-7 million people worldwide. Here we report the identification of the first Y-linked genes of this species. RESULTS: The R. prolixus genome was recently sequenced using separate libraries for each sex and the sequences assembled only with male reads are candidates for Y linkage. We found 766 such candidates and PCR tests with the ten largest ones, confirmed Y-linkage for all of them, suggesting that "separate libraries" is a reliable method for the identification of Y-linked sequences. BLAST analyses of the 766 candidate scaffolds revealed that 568 scaffolds contained genes or part of putative genes. We tested Y-linkage for 36 candidates and found that nine of them are Y-linked (the PCR results for the other 25 genes were inconclusive or revealed autosomal/X-linkage). Hence, we describe in this study, for the first time, Y-linked genes in the R. prolixus genome: two zinc finger proteins (Znf-Y1 and Znf-Y2), one metalloproteinase (Met-Y), one aconitase/iron regulatory protein (Aco-Y) and five genes devoid of matches in any database (Rpr-Y1 to Rpr-Y5). Expression profile studies revealed that eight genes are expressed mainly in adult testis (some of which presented a weak expression in the initial developmental stages), while Aco-Y has a gut-restricted expression. CONCLUSIONS: In this study we showed that the approach used for the R. prolixus genome project (separate sequencing of male and female DNA) is key to easy and fast identification of sex-specific (e.g. Y chromosome sequences). The nine new R. prolixus Y-linked genes reported here provide unique markers for population and phylogenetic analysis and further functional studies of these genes may answer some questions about sex determination, male fertility and Y chromosome evolution in this important species.


Subject(s)
Genes, Insect , Genes, Y-Linked , Rhodnius/genetics , Animals , Computational Biology/methods , Female , Genome, Insect , Genomics , Male , Molecular Sequence Annotation , Phylogeny , Rhodnius/classification , Y Chromosome
10.
Mol Biol Evol ; 31(10): 2612-23, 2014 Oct.
Article in English | MEDLINE | ID: mdl-24974375

ABSTRACT

Y chromosomes, with their reduced effective population size, lack of recombination, and male-limited transmission, present a unique collection of constraints for the operation of natural selection. Male-limited transmission may greatly increase the efficacy of selection for male-beneficial mutations, but the reduced effective size also inflates the role of random genetic drift. Together, these defining features of the Y chromosome are expected to influence rates and patterns of molecular evolution on the Y as compared with X-linked or autosomal loci. Here, we use sequence data from 11 genes in 9 Drosophila species to gain insight into the efficacy of natural selection on the Drosophila Y relative to the rest of the genome. Drosophila is an ideal system for assessing the consequences of Y-linkage for molecular evolution in part because the gene content of Drosophila Y chromosomes is highly dynamic, with orthologous genes being Y-linked in some species whereas autosomal in others. Our results confirm the expectation that the efficacy of natural selection at weakly selected sites is reduced on the Y chromosome. In contrast, purifying selection on the Y chromosome for strongly deleterious mutations does not appear to be compromised. Finally, we find evidence of recurrent positive selection for 4 of the 11 genes studied here. Our results thus highlight the variable nature of the mode and impact of natural selection on the Drosophila Y chromosome.


Subject(s)
Drosophila/classification , Drosophila/genetics , Selection, Genetic , Y Chromosome/genetics , Animals , Evolution, Molecular , Female , Male , Models, Genetic , Mutation Rate , Phylogeny , Sequence Deletion
11.
J Biol Chem ; 288(41): 29323-32, 2013 Oct 11.
Article in English | MEDLINE | ID: mdl-23986441

ABSTRACT

The heme molecule is the prosthetic group of many hemeproteins involved in essential physiological processes, such as electron transfer, transport of gases, signal transduction, and gene expression modulation. However, heme is a pro-oxidant molecule capable of propagating reactions leading to the generation of reactive oxygen species. The blood-feeding insect Rhodnius prolixus releases enormous amounts of heme during host blood digestion in the midgut lumen when it is exposed to a physiological oxidative challenge. Additionally, this organism produces a hemolymphatic heme-binding protein (RHBP) that transports heme to pericardial cells for detoxification and to growing oocytes for yolk granules and as a source of heme for embryo development. Here, we show that silencing of RHBP expression in female fat bodies reduced total RHBP circulating in the hemolymph, promoting oxidative damage to hemolymphatic proteins. Moreover, RHBP knockdown did not cause reduction in oviposition but led to the production of heme-depleted eggs (white eggs). A lack of RHBP did not alter oocyte fecundation. However, produced white eggs were nonviable. Embryo development cellularization and vitellin yolk protein degradation, processes that normally occur in early stages of embryogenesis, were compromised in white eggs. Total cytochrome c content, cytochrome c oxidase activity, citrate synthase activity, and oxygen consumption, parameters that indicate mitochondrial function, were significantly reduced in white eggs compared with normal dark red eggs. Our results showed that reduction of heme transport from females to growing oocytes by RHBP leads to embryonic mitochondrial dysfunction and impaired embryogenesis.


Subject(s)
Carrier Proteins/genetics , Hemeproteins/genetics , Mitochondria/metabolism , RNA Interference , Rhodnius/genetics , Animals , Biological Transport , Blotting, Western , Carrier Proteins/metabolism , Fat Body/embryology , Fat Body/metabolism , Female , Gene Expression Regulation, Developmental , Heme/metabolism , Heme-Binding Proteins , Hemeproteins/metabolism , Hemolymph/metabolism , Male , Microscopy, Electron, Scanning , Oocytes/growth & development , Oocytes/metabolism , Oocytes/ultrastructure , Reverse Transcriptase Polymerase Chain Reaction , Rhodnius/embryology , Rhodnius/metabolism , Zygote/growth & development , Zygote/metabolism
12.
Mol Biochem Parasitol ; 174(1): 18-25, 2010 Nov.
Article in English | MEDLINE | ID: mdl-20600354

ABSTRACT

Two species of the genus Trypanosoma infective to humans have been extensively studied at a cell and molecular level, but study of the third, Trypanosoma rangeli, remains in relative infancy. T. rangeli is non-pathogenic, but is frequently mistaken for the related Chagas disease agent Trypanosoma cruzi with which it shares vectors, hosts, significant antigenicity and a sympatric distribution over a wide geographical area. In this study, we present the T. rangeli gene expression profile as determined by the generation of ESTs (Expressed Sequence Tags) and ORESTES (Open Reading Frame ESTs). A total of 4208 unique high quality sequences were analyzed, composed from epimastigote and trypomastigote forms of SC-58 and Choachí strains, representing the two major phylogenetic lineages of this species. Comparative analyses with T. cruzi and other parasitic kinetoplastid species allowed the assignment of putative biological functions to most of the sequences generated and the establishment of an annotated T. rangeli gene expression database. Even though T. rangeli is apathogenic to mammals, genes associated with virulence in other pathogenic kinetoplastids were found. Transposable elements and genes associated mitochondrial gene expression, specifically RNA editing components, are also described for the first time. Our studies confirm the close phylogenetic relationship between T. cruzi and T. rangeli and enable us to make an estimate for the size of the T. rangeli genome repertoire ( approximately 8500 genes).


Subject(s)
Gene Expression Profiling , Trypanosoma/genetics , DNA Transposable Elements , DNA, Mitochondrial/genetics , Databases, Genetic , Databases, Nucleic Acid , Expressed Sequence Tags , Open Reading Frames , Protozoan Proteins/genetics , Sequence Analysis, DNA , Virulence Factors/genetics
13.
Trends Genet ; 25(6): 270-7, 2009 Jun.
Article in English | MEDLINE | ID: mdl-19443075

ABSTRACT

Classically, Y chromosomes are thought to originate from X chromosomes through a process of degeneration and gene loss. Now, the availability of 12 Drosophila genomes provides an opportunity to study the origin and evolution of Y chromosomes in an informative phylogenetic context. Surprisingly, the majority of Drosophila Y-linked genes are recent acquisitions from autosomes and Y chromosome gene gains are more frequent than gene losses. Moreover, the Drosophila pseudoobscura Y chromosome lacks homology with the Y of most Drosophila species. Thus, the Drosophila Y has a different evolutionary history from canonical Y chromosomes (such as the mammalian Y) and it also might have a different origin.


Subject(s)
Drosophila/genetics , Evolution, Molecular , Y Chromosome/genetics , Animals
14.
Nature ; 456(7224): 949-51, 2008 Dec 18.
Article in English | MEDLINE | ID: mdl-19011613

ABSTRACT

Chromosomal organization is sufficiently evolutionarily stable that large syntenic blocks of genes can be recognized even between species as distantly related as mammals and puffer fish (450 million years (Myr) of divergence). In Diptera, the gene content of the X chromosome and the autosomes is well conserved: in Drosophila more than 95% of the genes have remained on the same chromosome arm in the 12 sequenced species (63 Myr of divergence, traversing 400 Myr of evolution), and the same linkage groups are clearly recognizable in mosquito genomes (260 Myr of divergence). Here we investigate the conservation of Y-linked gene content among the 12 sequenced Drosophila species. We found that only a quarter of the Drosophila melanogaster Y-linked genes (3 out of 12) are Y-linked in all sequenced species, and that most of them (7 out of 12) were acquired less than 63 Myr ago. Hence, whereas the organization of other Drosophila chromosomes traces back to the common ancestor with mosquitoes, the gene content of the D. melanogaster Y chromosome is much younger. Gene losses are known to have an important role in the evolution of Y chromosomes, and we indeed found two such cases. However, the rate of gene gain in the Drosophila Y chromosomes investigated is 10.9 times higher than the rate of gene loss (95% confidence interval: 2.3-52.5), indicating a clear tendency of the Y chromosomes to increase in gene content. In contrast with the mammalian Y chromosome, gene gains have a prominent role in the evolution of the Drosophila Y chromosome.


Subject(s)
Drosophila/genetics , Evolution, Molecular , Genes, Insect/genetics , Y Chromosome/genetics , Animals , Conserved Sequence/genetics , Drosophila melanogaster/genetics , Genetic Linkage/genetics , Phylogeny , Synteny/genetics
15.
Genetics ; 179(4): 2325-7, 2008 Aug.
Article in English | MEDLINE | ID: mdl-18660539

ABSTRACT

The Y chromosome and other heterochromatic regions present special challenges for genome sequencing and for the annotation of genes. Here we describe two new genes (ARY and WDY) on the Drosophila melanogaster Y, bringing its number of known single-copy genes to 12. WDY may correspond to the fertility factor kl-1.


Subject(s)
Drosophila melanogaster/genetics , Genes, Y-Linked , Y Chromosome/genetics , Aldehyde Reductase/genetics , Animals , Drosophila Proteins/genetics , Male , Molecular Sequence Data
16.
Mem Inst Oswaldo Cruz ; 97(4): 583-7, 2002 Jun.
Article in English | MEDLINE | ID: mdl-12118296

ABSTRACT

The life cycle of Triatoma klugi Carcavallo, Jurberg, Lent & Galvão 2001 was compared under laboratory conditions using two groups of the F1 generation obtained from field-collected bugs. Among the 100 nymphs weekly fed on mice (Group A) or chicken (Group B), 77% of Group A and 67% of Group B reached the adult stage, and the mean time from the first nymphal stage to adult was 190.08 +/- 28.31 days and 221.23 +/- 40.50, respectively. The average span in days for each stage per group and the number of blood meals required for each stage were also evaluated. The overall mortality rate was 23% and 33% for Groups A and B, respectively. The mean number of eggs laid per month in a three-month period was of 56.20, 51.70 and 73.20 for Group A, and 64.50, 53.50 and 38.71 for Group B. Despite the blood source, comparative analysis revealed no statistically significant differences in the life cycle of T. klugi under laboratory conditions. Infection rates over 60% were observed for both Trypanosoma cruzi strains tested. Even revealing high infection rates of the hemolymph by T. rangeli strains, T. klugi revealed no salivary gland infections and was not able to transmit the parasite.


Subject(s)
Life Cycle Stages , Triatoma/growth & development , Animals , Animals, Laboratory , Chickens/parasitology , Feeding Behavior , Female , Male , Mice , Oviposition , Temperature , Time Factors , Triatoma/parasitology , Trypanosoma
17.
Mem. Inst. Oswaldo Cruz ; 97(4): 583-587, June 2002. tab, graf
Article in English | LILACS | ID: lil-314532

ABSTRACT

The life cycle of Triatoma klugi Carcavallo, Jurberg, Lent & Galväo 2001 was compared under laboratory conditions using two groups of the F1 generation obtained from field-collected bugs. Among the 100 nymphs weekly fed on mice (Group A) or chicken (Group B), 77 percent of Group A and 67 percent of Group B reached the adult stage, and the mean time from the first nymphal stage to adult was 190.08 ± 28.31 days and 221.23 ± 40.50, respectively. The average span in days for each stage per group and the number of blood meals required for each stage were also evaluated. The overall mortality rate was 23 percent and 33 percent for Groups A and B, respectively. The mean number of eggs laid per month in a three-month period was of 56.20, 51.70 and 73.20 for Group A, and 64.50, 53.50 and 38.71 for Group B. Despite the blood source, comparative analysis revealed no statistically significant differences in the life cycle of T. klugi under laboratory conditions. Infection rates over 60 percent were observed for both Trypanosoma cruzi strains tested. Even revealing high infection rates of the hemolymph by T. rangeli strains, T. klugi revealed no salivary gland infections and was not able to transmit the parasite


Subject(s)
Animals , Male , Female , Mice , Feeding Behavior , Life Cycle Stages , Triatoma , Animals, Laboratory , Chickens , Oviposition , Temperature , Time Factors , Triatoma , Trypanosoma
SELECTION OF CITATIONS
SEARCH DETAIL
...