Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters










Database
Language
Publication year range
1.
Nat Ecol Evol ; 6(7): 1024-1034, 2022 07.
Article in English | MEDLINE | ID: mdl-35681000

ABSTRACT

Previous research indicates that human genetic diversity in Wallacea-islands in present-day Eastern Indonesia and Timor-Leste that were never part of the Sunda or Sahul continental shelves-has been shaped by complex interactions between migrating Austronesian farmers and indigenous hunter-gatherer communities. Yet, inferences based on present-day groups proved insufficient to disentangle this region's demographic movements and admixture timings. Here, we investigate the spatio-temporal patterns of variation in Wallacea based on genome-wide data from 16 ancient individuals (2600-250 years BP) from the North Moluccas, Sulawesi and East Nusa Tenggara. While ancestry in the northern islands primarily reflects contact between Austronesian- and Papuan-related groups, ancestry in the southern islands reveals additional contributions from Mainland Southeast Asia that seem to predate the arrival of Austronesians. Admixture time estimates further support multiple and/or continuous admixture involving Papuan- and Asian-related groups throughout Wallacea. Our results clarify previously debated times of admixture and suggest that the Neolithic dispersals into Island Southeast Asia are associated with the spread of multiple genetic ancestries.


Subject(s)
Asian People , Asia, Southeastern , Humans , Indonesia
2.
Afr J Infect Dis ; 16(1): 6-12, 2022.
Article in English | MEDLINE | ID: mdl-35047725

ABSTRACT

BACKGROUND: The non-invasive cff-DNA and siblings DNA methods are the latest breakthroughs in the forensic identification process. The use of cff-DNA and siblings DNA as non-invasive techniques in the forensic identification process has, hitherto, not been widely proven. METHODS AND MATERIALS: This was an analytic observational study. The sample of this study consisted of peripheral blood of women in the second trimester of pregnancy and their two biological children. The kinship analysis was carried out through siblings' DNA and cff-DNA from the mothers through CODIS STR loci (CSF1PO, THO1, TPOX, and vWA). RESULTS: The means of allele sharing between full siblings in loci CSF1PO, THO1, TPOX, and vWA were 0 (13.75%), 1 (44.75%), and 2 (41.50%). The allele sharing found in the study is in line with the one in previous research conducted by Wenk (1998) and the theory proposed by O'Connor (2011), indicating that one allele sharing dominates, contrasting with the finding of previous research conducted by Sosiawan (2020) revealing that 2-allele sharing was more superior. The variation is caused by the ethnicity having a different genetic contribution among the population. The variation can be attributed to historical and demographical processes leading to genetic drift. CONCLUSION: The mean of SI in 1 allele sharing in CODIS STR loci (CSF1PO, THO1, TPOX, and vWA) has the highest value of 44.5%. The use of cff-DNA of pregnant women as one of the non-invasive techniques can serve as an alternative material in a paternity test.

3.
Science ; 372(6538): 165-171, 2021 04 09.
Article in English | MEDLINE | ID: mdl-33833119

ABSTRACT

The brains of modern humans differ from those of great apes in size, shape, and cortical organization, notably in frontal lobe areas involved in complex cognitive tasks, such as social cognition, tool use, and language. When these differences arose during human evolution is a question of ongoing debate. Here, we show that the brains of early Homo from Africa and Western Asia (Dmanisi) retained a primitive, great ape-like organization of the frontal lobe. By contrast, African Homo younger than 1.5 million years ago, as well as all Southeast Asian Homo erectus, exhibited a more derived, humanlike brain organization. Frontal lobe reorganization, once considered a hallmark of earliest Homo in Africa, thus evolved comparatively late, and long after Homo first dispersed from Africa.


Subject(s)
Biological Evolution , Brain/anatomy & histology , Frontal Lobe/anatomy & histology , Hominidae/anatomy & histology , Africa , Animals , Asia, Western , Fossils , Humans , Skull/anatomy & histology
4.
Proc Natl Acad Sci U S A ; 115(16): 4128-4133, 2018 04 17.
Article in English | MEDLINE | ID: mdl-29610337

ABSTRACT

The dispersal of modern humans from Africa is now well documented with genetic data that track population history, as well as gene flow between populations. Phenetic skeletal data, such as cranial and pelvic morphologies, also exhibit a dispersal-from-Africa signal, which, however, tends to be blurred by the effects of local adaptation and in vivo phenotypic plasticity, and that is often deteriorated by postmortem damage to skeletal remains. These complexities raise the question of which skeletal structures most effectively track neutral population history. The cavity system of the inner ear (the so-called bony labyrinth) is a good candidate structure for such analyses. It is already fully formed by birth, which minimizes postnatal phenotypic plasticity, and it is generally well preserved in archaeological samples. Here we use morphometric data of the bony labyrinth to show that it is a surprisingly good marker of the global dispersal of modern humans from Africa. Labyrinthine morphology tracks genetic distances and geography in accordance with an isolation-by-distance model with dispersal from Africa. Our data further indicate that the neutral-like pattern of variation is compatible with stabilizing selection on labyrinth morphology. Given the increasingly important role of the petrous bone for ancient DNA recovery from archaeological specimens, we encourage researchers to acquire 3D morphological data of the inner ear structures before any invasive sampling. Such data will constitute an important archive of phenotypic variation in present and past populations, and will permit individual-based genotype-phenotype comparisons.


Subject(s)
Biological Evolution , Ear, Inner/anatomy & histology , Human Migration/history , Africa , Anatomy, Comparative , Animals , Cephalometry/methods , Ear, Inner/diagnostic imaging , History, Ancient , Human Genome Project , Humans , Imaging, Three-Dimensional , Phenotype , Primates/anatomy & histology , Tomography, X-Ray Computed
SELECTION OF CITATIONS
SEARCH DETAIL
...