Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
PLoS One ; 12(6): e0179377, 2017.
Article in English | MEDLINE | ID: mdl-28594961

ABSTRACT

Left-right asymmetry is a fundamental feature of higher-order brain structure; however, the molecular basis of brain asymmetry remains unclear. We recently identified structural and functional asymmetries in mouse hippocampal circuitry that result from the asymmetrical distribution of two distinct populations of pyramidal cell synapses that differ in the density of the NMDA receptor subunit GluRε2 (also known as NR2B, GRIN2B or GluN2B). By examining the synaptic distribution of ε2 subunits, we previously found that ß2-microglobulin-deficient mice, which lack cell surface expression of the vast majority of major histocompatibility complex class I (MHCI) proteins, do not exhibit circuit asymmetry. In the present study, we conducted electrophysiological and anatomical analyses on the hippocampal circuitry of mice with a knockout of the paired immunoglobulin-like receptor B (PirB), an MHCI receptor. As in ß2-microglobulin-deficient mice, the PirB-deficient hippocampus lacked circuit asymmetries. This finding that MHCI loss-of-function mice and PirB knockout mice have identical phenotypes suggests that MHCI signals that produce hippocampal asymmetries are transduced through PirB. Our results provide evidence for a critical role of the MHCI/PirB signaling system in the generation of asymmetries in hippocampal circuitry.


Subject(s)
Hippocampus/metabolism , Nerve Net/metabolism , Receptors, Immunologic/metabolism , Animals , Dendritic Spines/drug effects , Dendritic Spines/metabolism , Excitatory Postsynaptic Potentials/drug effects , Functional Laterality/drug effects , Gene Targeting , Hippocampus/drug effects , Mice, Inbred C57BL , Mice, Knockout , Models, Biological , Nerve Net/drug effects , Neuronal Plasticity/drug effects , Phenols/pharmacology , Piperidines/pharmacology , Pyramidal Cells/drug effects , Pyramidal Cells/metabolism , Receptors, Immunologic/deficiency , Synapses/drug effects , Synapses/metabolism , Synaptic Transmission/drug effects , beta 2-Microglobulin
2.
Acta Histochem Cytochem ; 46(2): 59-64, 2013 Apr 30.
Article in English | MEDLINE | ID: mdl-23720604

ABSTRACT

Transcripts of the choline acetyltransferase (ChAT) gene reveal a number of different splice variants including ChAT of a peripheral type (pChAT). Immunohistochemical staining of the brain using an antibody against pChAT clearly revealed peripheral cholinergic neurons, but failed to detect cholinergic neurons in the central nervous system. In rodents, pChAT-immunoreactivity has been detected in cholinergic parasympathetic postganglionic and enteric ganglion neurons. In addition, pChAT has been observed in non-cholinergic neurons such as peripheral sensory neurons in the trigeminal and dorsal root ganglia. The common type of ChAT (cChAT) has been investigated in many parts of the brain and the spinal cord of non-human primates, but little information is available about the localization of pChAT in primate species. Here, we report the detection of pChAT immunoreactivity in trigeminal ganglion (TG) neurons and its co-localization with Substance P (SP) and/or calcitonin gene-related peptide (CGRP) in the cynomolgus monkey, Macaca fascicularis. Neurons positive for pChAT were observed in a rather uniform pattern in approximately half of the trigeminal neurons throughout the TG. Most pChAT-positive neurons had small or medium-sized cell bodies. Double-immunofluorescence staining showed that 85.1% of SP-positive cells and 74.0% of CGRP-positive cells exhibited pChAT immunoreactivity. Most pChAT-positive cells were part of a larger population of neurons that co-expressed SP and/or CGRP.

SELECTION OF CITATIONS
SEARCH DETAIL
...