Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
Tohoku J Exp Med ; 261(3): 199-209, 2023 Nov 18.
Article in English | MEDLINE | ID: mdl-37704419

ABSTRACT

A new beta TiNbSn alloy with a low Young's modulus of approximately 40 GPa has been developed to resolve the stress shielding by Young's modulus divergence. In this study, the efficacy of TiNbSn alloy locking plates on bone repair is compared to that of commercially pure titanium (CP-Ti). The TiNbSn alloy and CP-Ti, which have Young's moduli of 49.1 GPa and 107 GPa, respectively, were compared. Male Japanese white rabbits were anesthetized, and osteotomy and osteosynthesis with locking plates were performed on the right tibia. The bone repair was assessed using micro-computed tomography (CT), histomorphometry, immunohistochemistry, and mechanical testing. Micro-CT, histomorphometry, immunohistochemistry, and mechanical testing were performed four weeks after osteotomy. Six weeks after surgery, micro-CT and mechanical testing were performed. Micro-CT analysis at four weeks after surgery showed that the intramedullary fracture callus in the TiNbSn alloy group had more bone volume and numerous bridging structures compared to the CP-Ti group (CP-Ti vs. TiNbSn alloy, 34.3 ± 13.1 mm3 vs. 61.3 ± 19.6 mm3, p = 0.02; mean ± standard deviation). At four weeks post-osteotomy, the healed tibia showed significantly higher strength in the TiNbSn alloy group compared with CP-Ti (CP-Ti vs. TiNbSn alloy, 81.3 ± 31.2 N vs. 133.7 ± 46.6 N, p = 0.04). TiNbSn alloy locking plates had a more positive impact on bone formation and bone strength restoration than the CP-Ti locking plates during the early phase of bone healing.


Subject(s)
Fracture Fixation, Internal , Tibia , Male , Animals , Rabbits , Elastic Modulus , Tibia/diagnostic imaging , Tibia/surgery , X-Ray Microtomography , Alloys
2.
Clin Orthop Relat Res ; 480(9): 1817-1832, 2022 09 01.
Article in English | MEDLINE | ID: mdl-35543573

ABSTRACT

BACKGROUND: Ti6Al4V alloy, which is commonly used for biomedical applications, has a Young modulus (110 GPa) that is higher than that of human cortical bone (11 to 20 GPa). Using an implant with a material with a low Young modulus that enhances load sharing by the bone even more than those made of Ti6Al4V could be beneficial for bone healing and further reduce the potential for stress shielding. A new ß-type TiNbSn alloy has a low Young modulus of approximately 40 to 49 GPa. However, whether the new titanium alloy with a lower Young modulus is advantageous in terms of fracture healing has not been assessed, and a small-animal model seems a reasonable first step in its assessment. QUESTIONS/PURPOSES: To assess the impact of a TiNbSn alloy plate with a lower Young modulus compared with a Ti6Al4V alloy plate on fracture healing, we evaluated: (1) bony bridging and callus volume, (2) new bone formation and remaining cartilage tissue, (3) osteoblast activity in the callus, and (4) mechanical strength and stiffness of the callus in bending. METHODS: Fracture plates manufactured from TiNbSn and Ti6Al4V alloys, which have Young moduli of 49 GPa and 110 GPa, respectively, were compared. The main reason for using rabbits was the high reliability of the three-point bending mechanical test of the rabbit tibia. Forty-two male Japanese white rabbits weighing 2.8 to 3.4 kg were anesthetized. A 5-cm skin incision was made on the medial side in the mid-diaphysis of the right tibia. Eight-hole plates were used, which were 42 mm long, 5 mm wide, and 1.2 mm thick. Plate fixation was performed using three proximal and three distal screws. After the plate was installed, an osteotomy was performed using a 1-mm-wide wire saw to create a standardized tibial transverse osteotomy model with a 1-mm gap. Bone healing was quantitatively assessed by two nonblinded observers using micro-CT (bony bridging and callus volume), histomorphometry (new bone formation and remaining cartilage tissue), immunohistochemistry (osteoblast activity), and mechanical testing (mechanical strength and stiffness in bending). Measurements on nondemineralized specimens were descriptive statistics due to their small number. Four weeks after osteotomy and fixation, 30 rabbits were euthanized to undergo micro-CT and subsequent mechanical testing (n = 12), histomorphometry and immunohistochemistry with demineralized specimens (n = 12), and histomorphometry with a nondemineralized specimen (n = 6). Eight weeks postoperatively, 12 rabbits were euthanized for micro-CT and subsequent mechanical testing. RESULTS: Intramedullary fracture calluses treated with TiNbSn alloy plates had larger bone volumes and more numerous bridging structures than those treated with Ti6Al4V alloy plates at 4 weeks after osteotomy (Ti6Al4V alloy versus TiNbSn alloy: 30 ± 7 mm 3 versus 52 ± 14 mm 3 , mean difference 22 [95% CI 9 to 37]; p = 0.005; ICC 0.98 [95% CI 0.95 to 0.99]). Histologic assessments demonstrated there was greater new bone formation (total callus: Ti6Al4V versus TiNbSn: 16 ± 4 mm 2 versus 24 ± 7 mm 2 , mean difference 8 [95% CI 1 to 16]; p = 0.04; ICC 0.98 [95% CI 0.93 to 0.99]; intramedullary callus: Ti6Al4V versus TiNbSn: 6 ± 4 mm 2 versus 13 ± 5 mm 2 , mean difference 7 [95% CI 1 to 13]; p = 0.02; ICC 0.98 [95% CI 0.95 to 0.99]) and a higher number of osteocalcin-positive cells (Ti6Al4V alloy versus TiNbSn alloy: 1397 ± 197 cells/mm 2 versus 2044 ± 183 cells/mm 2 , mean difference 647 [95% CI 402 to 892]; p < 0.001; ICC 0.98 [95% CI 0.95 to 0.99]) in the TiNbSn alloy group than in the Ti6Al4V alloy group. At 4 weeks after osteotomy, both bone strength and stiffness of the healed bone in the TiNbSn alloy group were higher than those in the Ti6Al4V alloy group (maximum load: Ti6Al4V alloy versus TiNbSn alloy: 83 ± 30 N versus 127 ± 26 N; mean difference 44 [95% CI 8 to 80]; p = 0.02; stiffness: Ti6Al4V alloy versus TiNbSn alloy: 92 ± 43 N/mm versus 165 ± 63 N/mm; mean difference 73 [95% CI 4 to 143]; p = 0.047). Eight weeks after osteotomy, no between-group differences were observed in the strength and stiffness of the healed bone. CONCLUSION: The results of this study indicate that TiNbSn alloy plate with a lower Young modulus resulted in improved bone formation and stiffer callus during the early phase (4 weeks after surgery) but not the later phase (8 weeks after surgery) of bone healing. CLINICAL RELEVANCE: An overly stiff plate may impair callus formation and bone healing. The TiNbSn alloy plate with a low Young modulus improves the early formation of new bone and stiff callus at the osteotomy site compared with the Ti6Al4V alloy plate in the healing process, which may promote bone repair. TiNbSn alloy may be a promising biomaterial for fracture treatment devices. Further research to address concerns about the strength of TiNbSn alloy plates, such as fatigue life and plate fracture, will be necessary for clinical applications, including mechanical tests to verify fatigue life and validation in larger animals with greater body weight.


Subject(s)
Bone Plates , Tibia , Alloys/chemistry , Animals , Biomechanical Phenomena , Elastic Modulus , Fracture Healing , Humans , Male , Rabbits , Reproducibility of Results , Tibia/surgery
3.
Hum Pathol ; 41(2): 190-8, 2010 Feb.
Article in English | MEDLINE | ID: mdl-19800101

ABSTRACT

Estrogen receptor expression has been reported in non-small cell lung cancer. We examined the correlation between aromatase, a key enzyme in the synthesis of estrogen, and estrogen receptor expressions in 105 non-small cell lung cancer cases. All patients were older than 60 years, and all female patients were postmenopausal. Estrogen receptor alpha and progesterone receptor were detected in only 1 and 14 cases, respectively. Estrogen receptor beta and aromatase were positive in 75 and 89 cases respectively. Estrogen receptor beta expression in non-small cell lung cancer showed an inverse correlation with lymph node metastasis (P < .05). Only among females, both estrogen receptor beta and aromatase expressions were correlated with higher Ki-67 labeling index and younger age (P < .05). Among 89 aromatase-positive cases, 70 were positive for estrogen receptor beta, demonstrating a significant concordance (P < .05). Simultaneous immunohistochemical staining for aromatase and estrogen receptor beta showed a high rate of double positive association. Male non-small cell lung cancer cases with double positivity for aromatase and estrogen receptor beta demonstrated lower status in N factor by TNM classification (P < .05). In addition, among 89 aromatase-positive cases, a low-Allred total score of estrogen receptor beta showed a significant relationship with large tumor size and high T factor by TNM classification (P < .05). In conclusion, frequent coexpression of aromatase and estrogen receptor beta in non-small cell lung cancer might suggest some functional correlation between aromatase and estrogen receptor beta, whereas estrogen receptor beta negativity might be correlated with malignant progression of non-small cell lung cancer.


Subject(s)
Aromatase/metabolism , Carcinoma, Non-Small-Cell Lung/metabolism , Estrogen Receptor beta/metabolism , Lung Neoplasms/metabolism , Aged , Aged, 80 and over , Carcinoma, Non-Small-Cell Lung/pathology , Chi-Square Distribution , Female , Humans , Immunohistochemistry , Ki-67 Antigen/metabolism , Lung Neoplasms/pathology , Male , Middle Aged , Neoplasm Staging , Receptors, Progesterone/metabolism , Sex Factors
SELECTION OF CITATIONS
SEARCH DETAIL