Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
Environ Res ; 213: 113701, 2022 10.
Article in English | MEDLINE | ID: mdl-35752326

ABSTRACT

Water-stable macro- (WSAma) and free microaggregates (WSAmi) were isolated from the 2-1 mm air-dry macroaggregates from the surface horizons of Haplic Chernozem in contrasting variants of land use: the steppe and the bare fallow. The 13C NMR data and the 13C natural abundance of the Occluded organic matter (OM) (LFoc) and Clay within WSAs in the steppe obviously indicate a lower degree of microbiological processing of OM within WSAmi as compared with WSAma. This is reflected in lower degrees of decomposition (DI) and aromaticity (ARI) of OM and the C/N ratio, as well as lower 13C enrichment. This implies that the "labile" part of OM within WSAmi (LFoc and Clay, which are components of microaggregates within water-stable aggregates (mWSAs)) is more physically protected compared to that within WSAma. However, the heavier total δ13C signature of OM within WSAmi indicates its greater degree of microbiological processing compared to that within WSAma. This seems contrary to the concept of greater physical protection of OM within microaggregates as compared to macroaggregates. It was revealed that the heavier total δ13C signature of OM within WSAmi (greater degree of microbiological processing) is determined by the "oldest" OM located in the inter-aggregate space of WSAs, which is concentrated in the Residue fraction (Res). Due to its quantitative dominance, the Residue fraction is crucial for the total δ13C signature of WSAs. Negative changes in the quality of OM under the long-term bare fallow (52-yr) were reflected in a sharp increase in the integral indices of the chemical structure (DI, ARI), as well as the hydrophobicity index (HI) in all studied OM pools. It was accompanied by their 13C enrichment in the bare fallow compared to the steppe. Free microaggregates (WSAmi) are fragments of disintegrated macroaggregates (WSAma). We found no evidence of their formation within macroaggregates.


Subject(s)
Soil , Water , Carbon/chemistry , Carbon Isotopes , Clay , Soil/chemistry , Water/analysis
2.
Environ Res ; 191: 110205, 2020 12.
Article in English | MEDLINE | ID: mdl-32949616

ABSTRACT

The aim of the current research was to study structural features of four organic matter (OM) pools isolated by the modified method of granulo-densimetric fractionation from two Сhernozems. We purposed to relate these features to the OM allocation and the transformation processes. The pools included: 1) free light fraction located in an inter-aggregate space, 2) light fraction occluded inside the microaggregates, 3) OM bound with clay particles, and 4) OM bound with a residual heavy fraction left after light fractions and clay separation. Soils of contrasting land uses: steppe and long-term permanent bare fallow were selected to assess changes that occur in soil OM during the degradation. We used 13C CP/MAS NMR spectroscopy controlling the quantitativeness of spectra with the aid of 13C DP/MAS NMR. The obtained spectra of the studied fractions clearly differed in the proportion of main functional groups. The occluded OM is more aromatic compared to the free OM. The structural changes observed at transition from the free light fraction to the occluded one indicate an active decomposition of lignin and carbohydrates in the latter fraction. This provides in the occluded OM appropriate conditions for the formation of "young HA": high local concentration of substrates and spatial proximity of enzymes. At C-deficiency (bare fallow) the chemical structure of the occluded OM is very close to that of humic acids. The chemical structure of the clay bound OM reflects high content of products of microbial origin. OM of the residual heavy fraction differs from that of the clay: the proportions of main functional groups in it are more close to that of the free light fraction, but with higher carboxyl content. Heavy fractions also differ under acid treatment: the residue losses less carbon. The above-mentioned differences show that the division of heavy fractions into two components is reasonable. Various acid hydrolyzability indicates a predominance of strong chemical bonds in the occluded OM and the significant contribution of weak bonds in the clay OM, i.e., the occluded OM is highly condensed, in contrast, components of the clay OM are largely interconnected by hydrogen-, coordinate, hydrophobic and other relatively weak bonds. Soil degradation under extreme land use leads not only to OM scarcity, but also to its greater hydrolyzability, strong enrichment with aromatic fragments and depletion of carbohydrate and aliphatic fragments in all studied fractions. Degradation changes in the occluded OM are most pronounced. Our results demonstrate that the applied fractionation scheme coupled with quantitative 13C CP/MAS NMR spectroscopy is a very promising approach for evaluating processes of soil OM transformation and degradation.


Subject(s)
Carbon , Soil , Clay , Humic Substances/analysis , Magnetic Resonance Spectroscopy
3.
Sci Total Environ ; 497-498: 29-37, 2014 Nov 01.
Article in English | MEDLINE | ID: mdl-25112822

ABSTRACT

The quality, stability and availability of organic carbon (OC) in soil organic matter (SOM) can vary widely between differently managed ecosystems. Several approaches have been developed for isolating SOM fractions to examine their ecological roles, but links between the bioavailability of the OC of size-density fractions and soil microbial communities have not been previously explored. Thus, in the presented laboratory study we investigated the potential bioavailability of OC and the structure of associated microbial communities in different particle-size and density fractions of SOM. For this we used samples from four grassland ecosystems with contrasting management intensity regimes and two soil types: a Haplic Cambisol and a typical Chernozem. A combined size-density fractionation protocol was applied to separate clay-associated SOM fractions (CF1, <1 µm; CF2, 1-2 µm) from light SOM fractions (LF1, <1.8 g cm(-3); LF2, 1.8-2.0 g cm(-3)). These fractions were used as carbon sources in a respiration experiment to determine their potential bioavailability. Measured CO2-release was used as an index of substrate accessibility and linked to the soil microbial community structure, as determined by phospholipid fatty acids (PLFA) analysis. Several key factors controlling decomposition processes, and thus the potential bioavailability of OC, were identified: management intensity and the plant community composition of the grasslands (both of which affect the chemical composition and turnover of OC) and specific properties of individual SOM fractions. The PLFA patterns highlighted differences in the composition of microbial communities associated with the examined grasslands, and SOM fractions, providing the first broad insights into their active microbial communities. From observed interactions between abiotic and biotic factors affecting the decomposition of SOM fractions we demonstrate that increasing management intensity could enhance the potential bioavailability of OC, not only in the active and intermediate SOM pools, but also in the passive pool.


Subject(s)
Carbon/analysis , Ecosystem , Grassland , Soil/chemistry , Particle Size , Soil Microbiology
SELECTION OF CITATIONS
SEARCH DETAIL