Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 17 de 17
Filter
Add more filters











Publication year range
1.
Physiol Behav ; 276: 114473, 2024 Mar 15.
Article in English | MEDLINE | ID: mdl-38262572

ABSTRACT

Alcohol use disorder in humans is highly heritable, and as a term is synonymous with alcoholism, alcohol dependence, and alcohol addiction. Defined by the NIAAA as a medical condition characterized by an impaired ability to stop or control alcohol use despite adverse social, occupational, or health consequences, the genetic basis of alcohol dependence is much studied. However, an intriguing component to alcohol acceptance exists outside of genetics or social factors. In fact, mice of identical genetic backgrounds without any prior experience of tasting ethanol display widely varying preferences to it, far beyond those seen for typical taste solutions. Here, we hypothesized that a preference for ethanol, which tastes both bitter and sweet to humans, would be influenced by taste function. Using a mouse model of taste behavior, we tested preferences for bitter and sweet in mice that, without training or previous experience, either preferred or avoided ethanol solutions in consumption trials. Data showed clear sex differences, in which male mice that preferred ethanol also preferred a bitter quinine solution, whereas female mice that preferred ethanol also preferred a sweet sucralose solution. Male mice preferring ethanol also exhibited lower expression levels of mRNA for genes encoding the bitter taste receptors T2R26 and T2R37, and the bitter transducing G-protein subunit GNAT3, suggesting that the higher ethanol preference observed in the male mice may be due to bitter signaling, including that arising from ethanol, being weaker in this group. Results further support links between ethanol consumption and taste response, and may be relevant to substance abuse issues in human populations.


Subject(s)
Alcoholism , Taste , Female , Male , Humans , Taste/genetics , Alcoholism/genetics , Taste Perception/genetics , Ethanol/pharmacology , Alcohol Drinking/genetics , Food Preferences/physiology
2.
Gastroenterology ; 162(4): 1210-1225, 2022 04.
Article in English | MEDLINE | ID: mdl-34951993

ABSTRACT

BACKGROUND & AIMS: There is a major unmet need to assess the prognostic impact of antifibrotics in clinical trials because of the slow rate of liver fibrosis progression. We aimed to develop a surrogate biomarker to predict future fibrosis progression. METHODS: A fibrosis progression signature (FPS) was defined to predict fibrosis progression within 5 years in patients with hepatitis C virus and nonalcoholic fatty liver disease (NAFLD) with no to minimal fibrosis at baseline (n = 421) and was validated in an independent NAFLD cohort (n = 78). The FPS was used to assess response to 13 candidate antifibrotics in organotypic ex vivo cultures of clinical fibrotic liver tissues (n = 78) and cenicriviroc in patients with nonalcoholic steatohepatitis enrolled in a clinical trial (n = 19, NCT02217475). A serum protein-based surrogate FPS was developed and tested in a cohort of compensated cirrhosis patients (n = 122). RESULTS: A 20-gene FPS was defined and validated in an independent NAFLD cohort (adjusted odds ratio, 10.93; area under the receiver operating characteristic curve, 0.86). Among computationally inferred fibrosis-driving FPS genes, BCL2 was confirmed as a potential pharmacologic target using clinical liver tissues. Systematic ex vivo evaluation of 13 candidate antifibrotics identified rational combination therapies based on epigallocatechin gallate, which were validated for enhanced antifibrotic effect in ex vivo culture of clinical liver tissues. In patients with nonalcoholic steatohepatitis treated with cenicriviroc, FPS modulation was associated with 1-year fibrosis improvement accompanied by suppression of the E2F pathway. Induction of the PPARα pathway was absent in patients without fibrosis improvement, suggesting a benefit of combining PPARα agonism to improve the antifibrotic efficacy of cenicriviroc. A 7-protein serum protein-based surrogate FPS was associated with the development of decompensation in cirrhosis patients. CONCLUSION: The FPS predicts long-term fibrosis progression in an etiology-agnostic manner, which can inform antifibrotic drug development.


Subject(s)
Non-alcoholic Fatty Liver Disease , Disease Progression , Drug Development , Fibrosis , Humans , Liver/pathology , Liver Cirrhosis/complications , Non-alcoholic Fatty Liver Disease/drug therapy , Non-alcoholic Fatty Liver Disease/genetics , PPAR alpha/genetics
3.
Nat Commun ; 12(1): 5525, 2021 09 17.
Article in English | MEDLINE | ID: mdl-34535664

ABSTRACT

Chronic liver disease and hepatocellular carcinoma (HCC) are life-threatening diseases with limited treatment options. The lack of clinically relevant/tractable experimental models hampers therapeutic discovery. Here, we develop a simple and robust human liver cell-based system modeling a clinical prognostic liver signature (PLS) predicting long-term liver disease progression toward HCC. Using the PLS as a readout, followed by validation in nonalcoholic steatohepatitis/fibrosis/HCC animal models and patient-derived liver spheroids, we identify nizatidine, a histamine receptor H2 (HRH2) blocker, for treatment of advanced liver disease and HCC chemoprevention. Moreover, perturbation studies combined with single cell RNA-Seq analyses of patient liver tissues uncover hepatocytes and HRH2+, CLEC5Ahigh, MARCOlow liver macrophages as potential nizatidine targets. The PLS model combined with single cell RNA-Seq of patient tissues enables discovery of urgently needed targets and therapeutics for treatment of advanced liver disease and cancer prevention.


Subject(s)
Drug Discovery , Liver/pathology , Models, Biological , Animals , Carcinogenesis/pathology , Carcinoma, Hepatocellular/pathology , Cell Line, Tumor , Chemoprevention , Cohort Studies , Cyclic AMP/metabolism , Cyclic AMP Response Element-Binding Protein/metabolism , Disease Models, Animal , Gene Expression Regulation, Neoplastic/drug effects , HEK293 Cells , Hepacivirus/physiology , Hepatitis C/genetics , Hepatocytes/drug effects , Hepatocytes/metabolism , Hepatocytes/pathology , Humans , Immunologic Surveillance/drug effects , Inflammation/pathology , Liver/drug effects , Liver/metabolism , Liver Cirrhosis/pathology , Liver Neoplasms/pathology , Macrophages/drug effects , Macrophages/metabolism , Macrophages/pathology , Male , Mice, Knockout , Nizatidine/pharmacology , Prognosis , Signal Transduction/drug effects , Transcriptome/genetics
4.
Physiol Behav ; 228: 113191, 2021 01 01.
Article in English | MEDLINE | ID: mdl-33007356

ABSTRACT

While much is known on how the maternal diet affects offspring fitness, less is known on the role of taste in guiding and promoting food intake during this crucial period. Women have intense food cravings and exhibit altered taste preferences during pregnancy, however the mechanistic details underlying these changes are presently unclear. We performed longitudinal brief-access taste testing in female mice before, during, and after pregnancy, along with quantitative PCR on taste buds and morphological analysis of taste tissues from pregnant and non-pregnant mice. Sucrose licking response decreased progressively during pregnancy compared to that prior to mating, with partial recovery in the post-partum period. No change in taste morphology was evident between pregnant and non-pregnant mice, however a notable decrease in T1R3 sweet taste receptor mRNA expression was recorded in pregnant dams. We conclude that altered taste preferences during pregnancy likely result from changes in the expression profile of taste buds in the mother, which may promote a less healthy diet while expecting.


Subject(s)
Taste Buds , Taste , Animals , Dysgeusia , Female , Food Preferences , Mice , Pregnancy , Receptors, G-Protein-Coupled/genetics , Sucrose
5.
Annu Int Conf IEEE Eng Med Biol Soc ; 2020: 4294-4297, 2020 07.
Article in English | MEDLINE | ID: mdl-33018945

ABSTRACT

Sleep disturbance and deprivation are major factors in delayed recovery, which can affect both the physical and emotional well-being of patients. Patients hospitalized in the Intensive Care Unit (ICU) are especially vulnerable to sleep deprivation due to light-induced disturbances. A desirable lighting intervention in the ICU would minimize light-induced disturbances while simultaneously providing feedback for the staff on when to perform patient care activities that require high intensity lighting. To this end, we performed a first phase testing for a biometrics-integrated lighting system that serves a dual function of sleep initiation and maintenance to improve the patient's quality of sleep. Preliminary findings are presented as a case study to assess the feasibility of scaling up the experimental model. While findings point to additional testing being necessary to determine whether the lighting system will be effective, the experiment detailed in this report establishes a starting paradigm upon which to base further investigation.Clinical Relevance- A biometrics-integrated lighting system that can improve sleep quality of the patient will not only reduce cost of care for the patients, but also increase the level of satisfaction for both patients and the hospital staff.


Subject(s)
Lighting , Sleep Wake Disorders , Electroencephalography , Humans , Intensive Care Units , Sleep
6.
Cell ; 174(5): 1200-1215.e20, 2018 08 23.
Article in English | MEDLINE | ID: mdl-30100187

ABSTRACT

Nuclear pore complexes (NPCs) regulate nuclear-cytoplasmic transport, transcription, and genome integrity in eukaryotic cells. However, their functional roles in cancer remain poorly understood. We interrogated the evolutionary transcriptomic landscape of NPC components, nucleoporins (Nups), from primary to advanced metastatic human prostate cancer (PC). Focused loss-of-function genetic screen of top-upregulated Nups in aggressive PC models identified POM121 as a key contributor to PC aggressiveness. Mechanistically, POM121 promoted PC progression by enhancing importin-dependent nuclear transport of key oncogenic (E2F1, MYC) and PC-specific (AR-GATA2) transcription factors, uncovering a pharmacologically targetable axis that, when inhibited, decreased tumor growth, restored standard therapy efficacy, and improved survival in patient-derived pre-clinical models. Our studies molecularly establish a role of NPCs in PC progression and give a rationale for NPC-regulated nuclear import targeting as a therapeutic strategy for lethal PC. These findings may have implications for understanding how NPC deregulation contributes to the pathogenesis of other tumor types.


Subject(s)
E2F1 Transcription Factor/metabolism , Membrane Glycoproteins/metabolism , Nuclear Pore/physiology , Prostatic Neoplasms/metabolism , Proto-Oncogene Proteins c-myc/metabolism , Transcription Factors/metabolism , Active Transport, Cell Nucleus , Carcinogenesis , Cell Nucleus/metabolism , Cell Proliferation , GATA2 Transcription Factor/metabolism , Gene Expression Regulation, Neoplastic , Humans , Male , Nuclear Envelope , Nuclear Pore Complex Proteins , Signal Transduction
7.
PLoS Biol ; 16(3): e2001959, 2018 03.
Article in English | MEDLINE | ID: mdl-29558472

ABSTRACT

Despite evidence that the ability to taste is weakened by obesity and can be rescued with weight loss intervention, few studies have investigated the molecular effects of obesity on the taste system. Taste bud cells undergo continual turnover even in adulthood, exhibiting an average life span of only a few weeks, tightly controlled by a balance of proliferation and cell death. Recent data reveal that an acute inflammation event can alter this balance. We demonstrate that chronic low-grade inflammation brought on by obesity reduces the number of taste buds in gustatory tissues of mice-and is likely the cause of taste dysfunction seen in obese populations-by upsetting this balance of renewal and cell death.


Subject(s)
Inflammation/complications , Obesity/complications , Taste Buds/pathology , Taste Disorders/complications , Taste , Animals , Cell Proliferation , Diet, High-Fat , Male , Mice , Mice, Inbred C57BL , Taste Disorders/etiology , Tumor Necrosis Factor-alpha/metabolism
8.
Nanomedicine ; 14(2): 317-325, 2018 02.
Article in English | MEDLINE | ID: mdl-29157977

ABSTRACT

Safety is prerequisite for preventive medicine, but non-toxic agents are generally ineffective as clinical chemoprevention. Here we propose a strategy overcoming this challenge by delivering molecular-targeted agent specifically to the effector cell type to achieve sufficient potency, while circumventing toxicity in the context of cancer chemoprevention. Hepatic myofibroblasts drive progressive fibrosis that results in cirrhosis and liver cancer. In a rat model of cirrhosis-driven liver cancer, a small molecule epidermal growth factor receptor inhibitor, erlotinib, was delivered specifically to myofibroblasts by a versatile nanoparticle-based system, targeting platelet-derived growth factor receptor-beta uniquely expressed on their surface in the liver. With systemic administration of erlotinib, tumor burden was reduced to 31%, which was further improved to 21% by myofibroblast-targeted delivery even with reduced erlotinib dose (7.3-fold reduction with equivalent erlotinib dose) and less hepatocyte damage. These findings demonstrate a strategy, cell type-specific kinase inhibition, for more effective and safer precision cancer chemoprevention.


Subject(s)
ErbB Receptors/antagonists & inhibitors , Erlotinib Hydrochloride/pharmacology , Hepatocytes/drug effects , Liver Neoplasms, Experimental/prevention & control , Myofibroblasts/drug effects , Protein Kinase Inhibitors/pharmacology , Animals , Apoptosis/drug effects , Cell Proliferation/drug effects , Drug Delivery Systems , Hepatocytes/cytology , Hepatocytes/metabolism , Humans , Liver Cirrhosis/complications , Liver Neoplasms, Experimental/etiology , Male , Mice, Inbred C57BL , Myofibroblasts/cytology , Myofibroblasts/metabolism , Rats , Rats, Wistar
9.
Exp Mol Med ; 49(11): e396, 2017 11 17.
Article in English | MEDLINE | ID: mdl-29147013

ABSTRACT

Tissue fibrosis, characterized by excessive accumulation of aberrant extracellular matrix (ECM) produced by myofibroblasts, is a growing cause of mortality worldwide. Understanding the factors that induce myofibroblastic differentiation is paramount to prevent or reverse the fibrogenic process. Integrin-mediated interaction between the ECM and cytoskeleton promotes myofibroblast differentiation. In the present study, we explored the significance of integrin alpha 11 (ITGA11), the integrin alpha subunit that selectively binds to type I collagen during tissue fibrosis in the liver, lungs and kidneys. We showed that ITGA11 was co-localized with α-smooth muscle actin-positive myofibroblasts and was correlatively induced with increasing fibrogenesis in mouse models and human fibrotic organs. Furthermore, transcriptome and protein expression analysis revealed that ITGA11 knockdown in hepatic stellate cells (liver-specific myofibroblasts) markedly reduced transforming growth factor ß-induced differentiation and fibrotic parameters. Moreover, ITGA11 knockdown dramatically altered the myofibroblast phenotype, as indicated by the loss of protrusions, attenuated adhesion and migration, and impaired contractility of collagen I matrices. Furthermore, we demonstrated that ITGA11 was regulated by the hedgehog signaling pathway, and inhibition of the hedgehog pathway reduced ITGA11 expression and fibrotic parameters in human hepatic stellate cells in vitro, in liver fibrosis mouse model in vivo and in human liver slices ex vivo. Therefore, we speculated that ITGA11 might be involved in fibrogenic signaling and might act downstream of the hedgehog signaling pathway. These findings highlight the significance of the ITGA11 receptor as a highly promising therapeutic target in organ fibrosis.


Subject(s)
Integrin alpha Chains/genetics , Myofibroblasts/metabolism , Phenotype , Animals , Cell Differentiation , Disease Models, Animal , Fibrosis , Gene Expression Regulation , Gene Knockdown Techniques , Hedgehog Proteins/metabolism , Hepatic Stellate Cells/cytology , Hepatic Stellate Cells/metabolism , Humans , Immunohistochemistry , Integrin alpha Chains/metabolism , Kidney Diseases/etiology , Kidney Diseases/metabolism , Kidney Diseases/pathology , Liver Cirrhosis/etiology , Liver Cirrhosis/metabolism , Liver Cirrhosis/pathology , Mice , Signal Transduction , Transforming Growth Factor beta/metabolism
10.
Clin Cancer Res ; 23(18): 5446-5459, 2017 Sep 15.
Article in English | MEDLINE | ID: mdl-28630214

ABSTRACT

Purpose: Despite the fact that interstitial fluid (IF) represents a third of our body fluid, it is the most poorly understood body fluid in medicine. Increased IF pressure is thought to result from the increased deposition of extracellular matrix in the affected tissue preventing its reabsorption. In the cancer field, increased rigidity surrounding a cancerous mass remains the main reason that palpation and radiologic examination, such as mammography, are used for cancer detection. While the pressure produced by IF has been considered, the biochemical composition of IF has not been considered in its effect on tumors.Experimental Design: We classified 135 IF samples from bilateral mastectomy patients based on their ability to promote the invasion of breast cancer cells.Results: We observed a wide range of invasion scores. Patients with high-grade primary tumors at diagnosis had higher IF invasion scores. In mice, injections of high-score IF (IFHigh) in a normal mammary gland promotes ductal hyperplasia, increased collagen deposition, and local invasion. In a mouse model of residual disease, IFHigh increased disease progression and promoted aggressive visceral metastases. Mechanistically, we found that IFHigh induces myofibroblast differentiation and collagen production through activation of CLIC4. IFHigh also downregulates RYBP, leading to degradation of p53. Furthermore, in mammary glands of heterozygous p53-mutant knock-in mice, IFHigh promotes spontaneous tumor formation.Conclusions: Our study indicates that IF can increase the deposition of extracellular matrix and raises the provocative possibility that they play an active role in the predisposition, development, and clinical course of sporadic breast cancers. Clin Cancer Res; 23(18); 5446-59. ©2017 AACR.


Subject(s)
Breast Neoplasms/etiology , Breast Neoplasms/metabolism , Collagen/metabolism , Disease Susceptibility , Extracellular Fluid/metabolism , Tumor Suppressor Protein p53/genetics , Animals , Breast Neoplasms/diagnosis , Breast Neoplasms/therapy , Cell Line, Tumor , Cell Movement , Cell Proliferation , Diagnostic Imaging , Disease Models, Animal , Female , Gene Expression Profiling , Heterografts , Humans , Immunohistochemistry , Mice , Models, Biological , Neoplasm Grading , Neoplasm Invasiveness , Retrospective Studies , Tumor Suppressor Protein p53/metabolism
11.
Elife ; 62017 06 23.
Article in English | MEDLINE | ID: mdl-28644127

ABSTRACT

Rapid cellular proliferation in early development and cancer depends on glucose metabolism to fuel macromolecule biosynthesis. Metabolic enzymes are presumed regulators of this glycolysis-driven metabolic program, known as the Warburg effect; however, few have been identified. We uncover a previously unappreciated role for Mannose phosphate isomerase (MPI) as a metabolic enzyme required to maintain Warburg metabolism in zebrafish embryos and in both primary and malignant mammalian cells. The functional consequences of MPI loss are striking: glycolysis is blocked and cells die. These phenotypes are caused by induction of p53 and accumulation of the glycolytic intermediate fructose 6-phosphate, leading to engagement of the hexosamine biosynthetic pathway (HBP), increased O-GlcNAcylation, and p53 stabilization. Inhibiting the HBP through genetic and chemical methods reverses p53 stabilization and rescues the Mpi-deficient phenotype. This work provides mechanistic evidence by which MPI loss induces p53, and identifies MPI as a novel regulator of p53 and Warburg metabolism.


Subject(s)
Acetylglucosamine/metabolism , Mannose-6-Phosphate Isomerase/metabolism , Protein Processing, Post-Translational , Tumor Suppressor Protein p53/metabolism , Zebrafish Proteins/metabolism , Animals , Cell Line, Tumor , Fructosephosphates/metabolism , Glycolysis , Humans , Zebrafish/embryology
12.
Cancer Cell ; 30(6): 879-890, 2016 Dec 12.
Article in English | MEDLINE | ID: mdl-27960085

ABSTRACT

Cirrhosis is a milieu that develops hepatocellular carcinoma (HCC), the second most lethal cancer worldwide. HCC prediction and prevention in cirrhosis are key unmet medical needs. Here we have established an HCC risk gene signature applicable to all major HCC etiologies: hepatitis B/C, alcohol, and non-alcoholic steatohepatitis. A transcriptome meta-analysis of >500 human cirrhotics revealed global regulatory gene modules driving HCC risk and the lysophosphatidic acid pathway as a central chemoprevention target. Pharmacological inhibition of the pathway in vivo reduced tumors and reversed the gene signature, which was verified in organotypic ex vivo culture of patient-derived fibrotic liver tissues. These results demonstrate the utility of clinical organ transcriptome to enable a strategy, namely, reverse-engineering precision cancer prevention.


Subject(s)
Antineoplastic Agents/therapeutic use , Carcinoma, Hepatocellular/prevention & control , Gene Expression Profiling/methods , Liver Cirrhosis/genetics , Liver Neoplasms/prevention & control , Lysophospholipids/biosynthesis , Animals , Antineoplastic Agents/pharmacology , Carcinoma, Hepatocellular/genetics , Cell Line, Tumor , Gene Regulatory Networks , Genetic Predisposition to Disease , Humans , Liver Cirrhosis/complications , Liver Neoplasms/genetics , Rats , Risk Factors , Signal Transduction/drug effects , Xenograft Model Antitumor Assays
13.
Bioorg Med Chem Lett ; 26(23): 5819-5824, 2016 12 01.
Article in English | MEDLINE | ID: mdl-27793566

ABSTRACT

Based on our previous identification of a disubstituted aminothiazole termed HBF-0079 with promising selective toxicity for HCC-derived cell lines versus non-HCC liver lines, a series of tri-substituted aminothiazole derivatives were prepared and evaluated. This work resulted in the discovery of isopropyl 4-(pyrazin-2-yl)-2-(pyrimidin-2-ylamino)thiazole-5-carboxylate, 14, which displayed EC50 value of 0.11µM and more than 450times of selectivity, and its methyl carbonate prodrug 24 with improved solubility in organic solvents. Furthermore, 14, was shown to reduce the proliferation of several liver cancer cells derived directly from patients.


Subject(s)
Antineoplastic Agents/chemistry , Antineoplastic Agents/pharmacology , Carcinoma, Hepatocellular/drug therapy , Liver Neoplasms/drug therapy , Thiazoles/chemistry , Thiazoles/pharmacology , Amination , Carbonates/chemistry , Carbonates/pharmacology , Carcinoma, Hepatocellular/pathology , Cell Line, Tumor , Cell Proliferation/drug effects , Humans , Liver/drug effects , Liver/pathology , Liver Neoplasms/pathology , Prodrugs/chemistry , Prodrugs/pharmacology
14.
Genes Dev ; 30(7): 786-97, 2016 Apr 01.
Article in English | MEDLINE | ID: mdl-27013235

ABSTRACT

The Hippo signaling pathway is a major regulator of organ size. In the liver, Hippo pathway deregulation promotes hyperplasia and hepatocellular carcinoma primarily through hyperactivation of its downstream effector, YAP. The LATS2 tumor suppressor is a core member of the Hippo pathway. A screen for LATS2-interacting proteins in liver-derived cells identified the transcription factor SREBP2, master regulator of cholesterol homeostasis. LATS2 down-regulation caused SREBP activation and accumulation of excessive cholesterol. Likewise, mice harboring liver-specific Lats2 conditional knockout (Lats2-CKO) displayed constitutive SREBP activation and overexpressed SREBP target genes and developed spontaneous fatty liver disease. Interestingly, the impact of LATS2 depletion on SREBP-mediated transcription was clearly distinct from that of YAP overexpression. When challenged with excess dietary cholesterol, Lats2-CKO mice manifested more severe liver damage than wild-type mice. Surprisingly, apoptosis, inflammation, and fibrosis were actually attenuated relative to wild-type mice, in association with impaired p53 activation. Subsequently, Lats2-CKO mice failed to recover effectively from cholesterol-induced damage upon return to a normal diet. Additionally, decreased LATS2 mRNA in association with increased SREBP target gene expression was observed in a subset of human nonalcoholic fatty liver disease cases. Together, these findings further highlight the tight links between tumor suppressors and metabolic homeostasis.


Subject(s)
Fatty Liver/enzymology , Protein Serine-Threonine Kinases/metabolism , Sterol Regulatory Element Binding Protein 2/metabolism , Tumor Suppressor Proteins/metabolism , Animals , Cholesterol, Dietary/pharmacology , Fatty Liver/genetics , Gene Deletion , Gene Expression Regulation/genetics , Hep G2 Cells , Homeostasis/genetics , Humans , Liver/drug effects , Liver/enzymology , Mice, Knockout , Protein Binding , Protein Serine-Threonine Kinases/genetics , Signal Transduction , Sterol Regulatory Element Binding Protein 2/genetics , Tumor Suppressor Protein p53/genetics , Tumor Suppressor Protein p53/metabolism , Tumor Suppressor Proteins/genetics
15.
Liver Int ; 36(1): 108-18, 2016 Jan.
Article in English | MEDLINE | ID: mdl-26058462

ABSTRACT

BACKGROUND & AIMS: Hepatocellular carcinoma (HCC) is the second most lethal cancer caused by lack of effective therapies. Although promising, HCC molecular classification, which enriches potential responders to specific therapies, has not yet been assessed in clinical trials of anti-HCC drugs. We aimed to overcome these challenges by developing clinicopathological surrogate indices of HCC molecular classification. METHODS: Hepatocellular carcinoma classification defined in our previous transcriptome meta-analysis (S1, S2 and S3 subclasses) was implemented in an FDA-approved diagnostic platform (Elements assay, NanoString). Ninety-six HCC tumours (training set) were assayed to develop molecular subclass-predictive indices based on clinicopathological features, which were independently validated in 99 HCC tumours (validation set). Molecular deregulations associated with the histopathological features were determined by pathway analysis. Sample sizes for HCC clinical trials enriched with specific molecular subclasses were determined. RESULTS: Hepatocellular carcinoma subclass-predictive indices were steatohepatitic (SH)-HCC variant and immune cell infiltrate for S1 subclass, macrotrabecular/compact pattern, lack of pseudoglandular pattern, and high serum alpha-foetoprotein (>400 ng/ml) for S2 subclass, and microtrabecular pattern, lack of SH-HCC and clear cell variants, and lower histological grade for S3 subclass. Macrotrabecular/compact pattern, a predictor of S2 subclass, was associated with the activation of therapeutically targetable oncogene YAP and stemness markers EPCAM/KRT19. BMP4 was associated with pseudoglandular pattern. Subclass-predictive indices-based patient enrichment reduced clinical trial sample sizes from 121, 184 and 53 to 30, 43 and 22 for S1, S2 and S3 subclass-targeting therapies respectively. CONCLUSIONS: Hepatocellular carcinoma molecular subclasses can be enriched by clinicopathological indices tightly associated with deregulation of therapeutically targetable molecular pathways.


Subject(s)
Antigens, Neoplasm/analysis , Bone Morphogenetic Protein 4/analysis , Carcinoma, Hepatocellular , Cell Adhesion Molecules/analysis , Keratin-19/analysis , Liver Neoplasms , Aged , Amino Acid Sequence , Carcinoma, Hepatocellular/classification , Carcinoma, Hepatocellular/metabolism , Carcinoma, Hepatocellular/pathology , Drug Discovery , Epithelial Cell Adhesion Molecule , Female , Gene Expression Profiling , Genome-Wide Association Study , Humans , Liver Neoplasms/classification , Liver Neoplasms/metabolism , Liver Neoplasms/pathology , Male , Middle Aged , Molecular Sequence Data , Neoplasm Grading , Prognosis , alpha-Fetoproteins/analysis
16.
J Autoimmun ; 37(1): 48-57, 2011 Aug.
Article in English | MEDLINE | ID: mdl-21561736

ABSTRACT

Polymorphisms in the SLAM family of leukocyte cell surface regulatory molecules have been associated with lupus-like phenotypes in both humans and mice. The murine Slamf gene cluster lies within the lupus-associated Sle1b region of mouse chromosome 1. Non-autoreactive C57BL/6 (B6) mice that have had this region replaced by syntenic segments from other mouse strains (i.e. 129, NZB and NZW) are B6 congenic strains that spontaneously produce non-nephritogenic lupus-like autoantibodies. We have recently reported that genetic ablation of the SLAM family member CD48 (Slamf2) drives full-blown autoimmune disease with severe proliferative glomerulonephritis (CD48GN) in B6 mice carrying 129 sequences of the Sle1b region (B6.129CD48(-/-)). We also discovered that BALB/c mice with the same 129-derived CD48-null allele (BALB.129CD48(-/-)) have neither nephritis nor anti-DNA autoantibodies, indicating that strain specific background genes modulate the effects of CD48 deficiency. Here we further examine this novel model of lupus nephritis in which CD48 deficiency transforms benign autoreactivity into fatal nephritis. CD48GN is characterized by glomerular hypertrophy with mesangial expansion, proliferation and leukocytic infiltration. Immune complexes deposit in mesangium and in sub-endothelial, sub-epithelial and intramembranous sites along the glomerular basement membrane. Afflicted mice have low-grade proteinuria, intermittent hematuria and their progressive renal injury manifests with elevated urine NGAL levels and with uremia. In contrast to the lupus-like B6.129CD48(-/-) animals, neither BALB.129CD48(-/-) mice nor B6 × BALB/c F1.129CD48(-/-) progeny have autoimmune traits, indicating that B6-specific background genes modulate the effect of CD48 on lupus nephritis in a recessive manner.


Subject(s)
Antigens, CD/genetics , Antigens, CD/immunology , Lupus Erythematosus, Systemic/genetics , Lupus Erythematosus, Systemic/immunology , Lupus Nephritis/genetics , Animals , Antigen-Antibody Complex/genetics , Antigen-Antibody Complex/immunology , Autoimmunity/genetics , Autoimmunity/immunology , CD48 Antigen , Disease Models, Animal , Female , Genes, Recessive/genetics , Genes, Recessive/immunology , Glomerulonephritis/genetics , Glomerulonephritis/immunology , Glomerulonephritis/pathology , Kidney Glomerulus/immunology , Kidney Glomerulus/pathology , Kidney Glomerulus/ultrastructure , Lupus Erythematosus, Systemic/pathology , Lupus Nephritis/immunology , Lupus Nephritis/pathology , Mice , Mice, 129 Strain , Mice, Inbred BALB C , Mice, Inbred MRL lpr , Mice, Knockout
17.
Langmuir ; 22(19): 8192-6, 2006 Sep 12.
Article in English | MEDLINE | ID: mdl-16952261

ABSTRACT

Hydroxyl groups in dextrans have been selectively oxidized to aldehyde groups by sodium periodate in a controlled fashion with a percentage of conversion ranging from 6 to 100%. Dextrans (10, 70, 148, 500, and 2000 kDa) and oxidized 10k dextrans have been successfully grafted to functionalized silicon surfaces. The effect of molecular weight on protein adsorption is not nearly as striking as that of the extent of oxidation. When approximately 25% of the hydroxyl groups have been converted to aldehyde groups, there is negligible protein adsorption on surfaces containing the oxidized polysaccharides. Conformations of grafted polymers depend strongly on their chemical structures, that is, the relative amounts of -OH and -CHO groups. The dependence of the chain conformation as well as the protein resistance on the balance of the hydrogen bond donors (-OH) and the acceptors (-OH and -CHO) implies the importance of chemical structure of surface molecules, specifically the interactions between surface and surrounding water molecules on protein adsorption. Oxidized dextrans are potential poly(ethylene glycol) alternatives for nonfouling applications.


Subject(s)
Dextrans/chemistry , Silicon/chemistry , Adsorption , Coated Materials, Biocompatible/chemistry , Dextrans/classification , Microscopy, Atomic Force , Molecular Weight , Oxidation-Reduction , Proteins/chemistry , Surface Properties
SELECTION OF CITATIONS
SEARCH DETAIL