Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters











Database
Language
Publication year range
1.
Anal Biochem ; 591: 113571, 2020 02 15.
Article in English | MEDLINE | ID: mdl-31887265

ABSTRACT

Dopamine (DA) is an important neurotransmitter for regulating the central nervous system, hormones, and cardiovascular system. Fluorescence technique is usually applied for the rapid detection of DA neurotransmitter because DA is easily converted to fluorescent products under alkaline condition. However, it is difficult to accurately quantify low levels of DA (<10 nM) because the final product of DA conversion, so-called polydopamine (PDA), usually have low fluorescence efficiency. In this study, DA dissolved in Tris-EDTA buffer (pH 8.5) was oxidized and polymerized by adding NaOH as an oxidizing agent. After obtaining products with various degrees of polymerization, the fluorescent oligodopamine (F-ODA) (i.e., indole-5,6-quinone-rich compounds) was separated from non-fluorescent polydopamine (PDA) products. After removing non-fluorescent PDA by centrifugation, the F-ODA in the supernatant exhibited high FL intensity at 470 nm under excitation at 360 nm. At the optimal reaction conditions, the standard curve of the F-ODA exhibited a good linearity over wide range of DA concentration from 1 µM to 1 nM (limit of detection = ~0.1 nM), suggesting a very useful analytical tool for the accurate and sensitive detection of the neurotransmitter DA in bio-fluid.


Subject(s)
Dopamine/analysis , Spectrometry, Fluorescence
2.
Nano Converg ; 6(1): 30, 2019 Sep 02.
Article in English | MEDLINE | ID: mdl-31475314

ABSTRACT

Because dopamine (DA) is one of the most critical neurotransmitters that influence a wide variety of motivated human behaviors, it is necessary to develop a facile diagnostic tool that can quantify the physiological level. In this study, core-shell magnetic silica nanoparticles (Fe3O4@SiO2) were prepared using a modified sol-gel reaction. The Fe3O4@SiO2 were functionalized using 3-aminophenylboronic acid (APBA) via a facile and rapid synthetic route, hereafter referred to as Fe3O4@SiO2@APBA The resultant Fe3O4@SiO2@APBA not only adsorbed DA molecules, but also were easily separated from solution using a simple magnetic manipulation. The adsorbed amounts of DA by the Fe3O4@SiO2@APBA were quantified by measuring the changes in fluorescence intensity of polydopamine (at 463 nm) originated from the self-polymerized DA remained in the supernatant before and after the adsorption process. The Fe3O4@SiO2@APBA exhibited two-stage adsorption behavior for DA, and the maximal adsorption capacity was 108.46 µg/g at pH 8.5. Our particle system demonstrated the potential application for extracting compounds with cis-diols (including catechol amines) from the biological fluid.

SELECTION OF CITATIONS
SEARCH DETAIL