Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 6 de 6
Filter
Add more filters










Database
Language
Publication year range
1.
J Exp Med ; 218(9)2021 09 06.
Article in English | MEDLINE | ID: mdl-34279540

ABSTRACT

Inflammatory skin diseases including atopic dermatitis (AD) and psoriasis (PSO) are underpinned by dendritic cell (DC)-mediated T cell responses. Currently, the heterogeneous human cutaneous DC population is incompletely characterized, and its contribution to these diseases remains unclear. Here, we performed index-sorted single-cell flow cytometry and RNA sequencing of lesional and nonlesional AD and PSO skin to identify macrophages and all DC subsets, including the newly described mature LAMP3+BIRC3+ DCs enriched in immunoregulatory molecules (mregDC) and CD14+ DC3. By integrating our indexed data with published skin datasets, we generated a myeloid cell universe of DC and macrophage subsets in healthy and diseased skin. Importantly, we found that CD14+ DC3s increased in PSO lesional skin and co-produced IL1B and IL23A, which are pathological in PSO. Our study comprehensively describes the molecular characteristics of macrophages and DC subsets in AD and PSO at single-cell resolution, and identifies CD14+ DC3s as potential promoters of inflammation in PSO.


Subject(s)
Dermatitis, Atopic/pathology , Interleukin-1beta/metabolism , Interleukin-23 Subunit p19/metabolism , Langerhans Cells/pathology , Psoriasis/pathology , Dermatitis, Atopic/metabolism , Gene Expression , Gene Regulatory Networks , Humans , Interleukin-15/metabolism , Langerhans Cells/metabolism , Lipopolysaccharide Receptors/metabolism , Macrophages/cytology , Psoriasis/metabolism , Single-Cell Analysis
3.
Immunity ; 51(3): 573-589.e8, 2019 09 17.
Article in English | MEDLINE | ID: mdl-31474513

ABSTRACT

Human mononuclear phagocytes comprise phenotypically and functionally overlapping subsets of dendritic cells (DCs) and monocytes, but the extent of their heterogeneity and distinct markers for subset identification remains elusive. By integrating high-dimensional single-cell protein and RNA expression data, we identified distinct markers to delineate monocytes from conventional DC2 (cDC2s). Using CD88 and CD89 for monocytes and HLA-DQ and FcεRIα for cDC2s allowed for their specific identification in blood and tissues. We also showed that cDC2s could be subdivided into phenotypically and functionally distinct subsets based on CD5, CD163, and CD14 expression, including a distinct subset of circulating inflammatory CD5-CD163+CD14+ cells related to previously defined DC3s. These inflammatory DC3s were expanded in systemic lupus erythematosus patients and correlated with disease activity. These findings further unravel the heterogeneity of DC subpopulations in health and disease and may pave the way for the identification of specific DC subset-targeting therapies.


Subject(s)
Biomarkers/blood , Dendritic Cells/immunology , Inflammation/blood , Inflammation/immunology , Leukocytes, Mononuclear/immunology , Phagocytes/immunology , Antigens, CD/blood , Antigens, CD/immunology , Cells, Cultured , Flow Cytometry/methods , Humans , Lupus Erythematosus, Systemic/blood , Lupus Erythematosus, Systemic/immunology , Monocytes/immunology , Phenotype , Single-Cell Analysis
4.
Genome Med ; 9(1): 18, 2017 02 20.
Article in English | MEDLINE | ID: mdl-28219444

ABSTRACT

BACKGROUND: Expression quantitative trait loci (eQTL) databases represent a valuable resource to link disease-associated SNPs to specific candidate genes whose gene expression is significantly modulated by the SNP under investigation. We previously identified signal inhibitory receptor on leukocytes-1 (SIRL-1) as a powerful regulator of human innate immune cell function. While it is constitutively high expressed on neutrophils, on monocytes the SIRL-1 surface expression varies strongly between individuals. The underlying mechanism of regulation, its genetic control as well as potential clinical implications had not been explored yet. METHODS: Whole blood eQTL data of a Chinese cohort was used to identify SNPs regulating the expression of VSTM1, the gene encoding SIRL-1. The genotype effect was validated by flow cytometry (cell surface expression), correlated with electrophoretic mobility shift assay (EMSA), chromatin immunoprecipitation (ChIP) and bisulfite sequencing (C-methylation) and its functional impact studied the inhibition of reactive oxygen species (ROS). RESULTS: We found a significant association of a single CpG-SNP, rs612529T/C, located in the promoter of VSTM1. Through flow cytometry analysis we confirmed that primarily in the monocytes the protein level of SIRL-1 is strongly associated with genotype of this SNP. In monocytes, the T allele of this SNP facilitates binding of the transcription factors YY1 and PU.1, of which the latter has been recently shown to act as docking site for modifiers of DNA methylation. In line with this notion rs612529T associates with a complete demethylation of the VSTM1 promoter correlating with the allele-specific upregulation of SIRL-1 expression. In monocytes, this upregulation strongly impacts the IgA-induced production of ROS by these cells. Through targeted association analysis we found a significant Meta P value of 1.14 × 10-6 for rs612529 for association to atopic dermatitis (AD). CONCLUSION: Low expression of SIRL-1 on monocytes is associated with an increased risk for the manifestation of an inflammatory skin disease. It thus underlines the role of both the cell subset and this inhibitory immune receptor in maintaining immune homeostasis in the skin. Notably, the genetic regulation is achieved by a single CpG-SNP, which controls the overall methylation state of the promoter gene segment.


Subject(s)
DNA Methylation , Dermatitis, Atopic/metabolism , Gene Expression Regulation , Monocytes/metabolism , Polymorphism, Single Nucleotide , Receptors, Immunologic/genetics , Asian People/genetics , Dermatitis, Atopic/genetics , Female , Humans , Male , Promoter Regions, Genetic , Young Adult
5.
J Allergy Clin Immunol ; 137(3): 758-66.e3, 2016 Mar.
Article in English | MEDLINE | ID: mdl-26483175

ABSTRACT

BACKGROUND: Allergic rhinitis (AR) and asthma are common allergic conditions with a shared genetic component to their cause. The 17q12-21 locus includes several genes that have been linked to asthma susceptibility, but the role of this locus in AR is unclear. Asthma and AR in adults of Chinese ethnicity in Singapore are predominately caused by sensitization against house dust mites with a nearly complete penetrance of the allergen, which presents a unique opportunity for accurately identifying genetic associations with allergic diseases. OBJECTIVE: We sought to define the functional role of 17q12-21 in patients with AR and allergic asthma. METHODS: We asked whether single nucleotide polymorphisms (SNPs) in the 17q12-21 locus were associated with AR or asthma in a cohort of 3460 ethnic Chinese subjects residing in Singapore (1435 in the discovery phase and 2025 in the validation phase). Full-blood mRNA gene expression data, plasma IgE levels, and immune cell frequencies in peripheral blood were tested against the tag SNP genotypes. Luciferase assays were used to measure the effect of putative promoter SNPs on expression of the asthma-associated orosomucoid-like 3 gene (ORMDL3). RESULTS: Within 17q12-21, only the tag SNP rs8076131 was significantly associated with asthma (P = 8.53 × 10(-10); odds ratio, 0.6715), and AR status was independent of SNPs in this region. C-A alleles at rs8076131 resulted in significantly increased ORMDL3 expression in HEK293 cells in vitro relative to T-G alleles. Moreover, subjects with the risk genotype AA exhibited significantly higher total IgE levels and higher blood eosinophil counts than those with the lower-risk genotypes. CONCLUSION: The 17q12-21 locus has a strong genetic association with allergic asthma but not with AR. The polymorphic effect of this locus is attributed to the linkage set tagged by rs8076131, which affects the expression of ORMDL3, protein phosphatase 1, regulatory inhibitor subunit 1B (PPP1R1B), zona pellucida binding protein 2 (ZPBP2), and gasdermin B (GSDMB) and is correlated with high IgE levels and eosinophil counts in subjects bearing the risk genotype.


Subject(s)
Asthma/genetics , Chromosomes, Human, Pair 17 , Genetic Association Studies , Genetic Predisposition to Disease , Genetic Variation , Rhinitis, Allergic/genetics , Adolescent , Adult , Alleles , Asthma/blood , Asthma/immunology , Case-Control Studies , Child , Eosinophils , Female , Genome-Wide Association Study , Genotype , HEK293 Cells , Humans , Immunoglobulin E/blood , Immunoglobulin E/immunology , Leukocyte Count , Linkage Disequilibrium , Male , Membrane Proteins/genetics , Meta-Analysis as Topic , Middle Aged , Phenotype , Polymorphism, Single Nucleotide , Promoter Regions, Genetic , Quantitative Trait Loci , Rhinitis, Allergic/blood , Rhinitis, Allergic/immunology , Young Adult
6.
Eukaryot Cell ; 9(7): 1100-8, 2010 Jul.
Article in English | MEDLINE | ID: mdl-20495056

ABSTRACT

The Stagonospora nodorum StuA transcription factor gene SnStuA was identified by homology searching in the genome of the wheat pathogen Stagonospora nodorum. Gene expression analysis revealed that SnStuA transcript abundance increased throughout infection and in vitro growth to peak during sporulation. To investigate its role, the gene was deleted by homologous recombination. The growth of the resulting mutants was retarded on glucose compared to the wild-type growth, and the mutants also failed to sporulate. Glutamate as a sole carbon source restored the growth rate defect observed on glucose, although sporulation remained impaired. The SnstuA strains were essentially nonpathogenic, with only minor growth observed around the point of inoculation. The role of SnstuA was investigated using metabolomics, which revealed that this gene's product played a key role in regulating central carbon metabolism, with glycolysis, the TCA cycle, and amino acid synthesis all affected in the mutants. SnStuA was also found to positively regulate the synthesis of the mycotoxin alternariol. Gene expression studies on the recently identified effectors in Stagonospora nodorum found that SnStuA was a positive regulator of SnTox3 but was not required for the expression of ToxA. This study has uncovered a multitude of novel regulatory targets of SnStuA and has highlighted the critical role of this gene product in the pathogenicity of Stagonospora nodorum.


Subject(s)
Ascomycota/genetics , Ascomycota/metabolism , Carbon/metabolism , Gene Expression Regulation, Fungal , Mycotoxins/biosynthesis , Transcription Factors/metabolism , Triticum/microbiology , Ascomycota/growth & development , Ascomycota/pathogenicity , Fungal Proteins/genetics , Fungal Proteins/metabolism , Gene Deletion , Phenotype , Plant Leaves/microbiology , Polymerase Chain Reaction , Sequence Homology, Amino Acid , Transcription Factors/genetics
SELECTION OF CITATIONS
SEARCH DETAIL
...