Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Nat Microbiol ; 5(10): 1207-1216, 2020 10.
Article in English | MEDLINE | ID: mdl-32661312

ABSTRACT

The kinetochore is a macromolecular structure that assembles on the centromeres of chromosomes and provides the major attachment point for spindle microtubules during mitosis. In Trypanosoma brucei, the proteins that make up the kinetochore are highly divergent; the inner kinetochore comprises at least 20 distinct and essential proteins (KKT1-20) that include four protein kinases-CLK1 (also known as KKT10), CLK2 (also known as KKT19), KKT2 and KKT3. Here, we report the identification and characterization of the amidobenzimidazoles (AB) protein kinase inhibitors that show nanomolar potency against T. brucei bloodstream forms, Leishmania and Trypanosoma cruzi. We performed target deconvolution analysis using a selection of 29 T. brucei mutants that overexpress known essential protein kinases, and identified CLK1 as a primary target. Biochemical studies and the co-crystal structure of CLK1 in complex with AB1 show that the irreversible competitive inhibition of CLK1 is dependent on a Michael acceptor forming an irreversible bond with Cys 215 in the ATP-binding pocket, a residue that is not present in human CLK1, thereby providing selectivity. Chemical inhibition of CLK1 impairs inner kinetochore recruitment and compromises cell-cycle progression, leading to cell death. This research highlights a unique drug target for trypanosomatid parasitic protozoa and a new chemical tool for investigating the function of their divergent kinetochores.


Subject(s)
Kinetochores/metabolism , Protein Kinase Inhibitors/pharmacology , Protein Serine-Threonine Kinases/antagonists & inhibitors , Protein-Tyrosine Kinases/antagonists & inhibitors , Protozoan Proteins/antagonists & inhibitors , Trypanosoma brucei brucei/drug effects , Animals , Biomarkers , Cell Cycle/drug effects , Cell Line , Disease Models, Animal , Gene Expression , Humans , Immunophenotyping , Kinetochores/chemistry , Mice , Molecular Conformation , Molecular Dynamics Simulation , Protein Binding , Protein Kinase Inhibitors/chemistry , Protein Serine-Threonine Kinases/chemistry , Protein Serine-Threonine Kinases/genetics , Protein Serine-Threonine Kinases/metabolism , Protein-Tyrosine Kinases/chemistry , Protein-Tyrosine Kinases/genetics , Protein-Tyrosine Kinases/metabolism , Protozoan Proteins/chemistry , Structure-Activity Relationship
2.
Nature ; 537(7619): 229-233, 2016 09 08.
Article in English | MEDLINE | ID: mdl-27501246

ABSTRACT

Chagas disease, leishmaniasis and sleeping sickness affect 20 million people worldwide and lead to more than 50,000 deaths annually. The diseases are caused by infection with the kinetoplastid parasites Trypanosoma cruzi, Leishmania spp. and Trypanosoma brucei spp., respectively. These parasites have similar biology and genomic sequence, suggesting that all three diseases could be cured with drugs that modulate the activity of a conserved parasite target. However, no such molecular targets or broad spectrum drugs have been identified to date. Here we describe a selective inhibitor of the kinetoplastid proteasome (GNF6702) with unprecedented in vivo efficacy, which cleared parasites from mice in all three models of infection. GNF6702 inhibits the kinetoplastid proteasome through a non-competitive mechanism, does not inhibit the mammalian proteasome or growth of mammalian cells, and is well-tolerated in mice. Our data provide genetic and chemical validation of the parasite proteasome as a promising therapeutic target for treatment of kinetoplastid infections, and underscore the possibility of developing a single class of drugs for these neglected diseases.


Subject(s)
Chagas Disease/drug therapy , Kinetoplastida/drug effects , Kinetoplastida/enzymology , Leishmaniasis/drug therapy , Proteasome Endopeptidase Complex/drug effects , Proteasome Inhibitors/pharmacology , Proteasome Inhibitors/therapeutic use , Pyrimidines/pharmacology , Triazoles/pharmacology , Trypanosomiasis, African/drug therapy , Animals , Chagas Disease/parasitology , Chymotrypsin/antagonists & inhibitors , Chymotrypsin/metabolism , Disease Models, Animal , Female , Humans , Inhibitory Concentration 50 , Leishmaniasis/parasitology , Mice , Molecular Structure , Molecular Targeted Therapy , Proteasome Inhibitors/adverse effects , Proteasome Inhibitors/classification , Pyrimidines/adverse effects , Pyrimidines/chemistry , Pyrimidines/therapeutic use , Species Specificity , Triazoles/adverse effects , Triazoles/chemistry , Triazoles/therapeutic use , Trypanosomiasis, African/parasitology
SELECTION OF CITATIONS
SEARCH DETAIL
...