Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 9 de 9
Filter
Add more filters










Database
Language
Publication year range
1.
Pharmaceutics ; 15(3)2023 Mar 21.
Article in English | MEDLINE | ID: mdl-36986868

ABSTRACT

The incidence rate of malaria and the ensuing mortality prompts the development of novel antimalarial drugs. In this work, the activity of twenty-eight Amaryllidaceae alkaloids (1-28) belonging to seven different structural types was assessed, as well as twenty semisynthetic derivatives of the ß-crinane alkaloid ambelline (28a-28t) and eleven derivatives of the α-crinane alkaloid haemanthamine (29a-29k) against the hepatic stage of Plasmodium infection. Six of these derivatives (28h, 28m, 28n and 28r-28t) were newly synthesized and structurally identified. The most active compounds, 11-O-(3,5-dimethoxybenzoyl)ambelline (28m) and 11-O-(3,4,5-trimethoxybenzoyl)ambelline (28n), displayed IC50 values in the nanomolar range of 48 and 47 nM, respectively. Strikingly, the derivatives of haemanthamine (29) with analogous substituents did not display any significant activity, even though their structures are quite similar. Interestingly, all active derivatives were strictly selective against the hepatic stage of infection, as they did not demonstrate any activity against the blood stage of Plasmodium infection. As the hepatic stage is a bottleneck of the plasmodial infection, liver-selective compounds can be considered crucial for further development of the malaria prophylactics.

2.
Biomolecules ; 12(6)2022 06 17.
Article in English | MEDLINE | ID: mdl-35740968

ABSTRACT

Tuberculosis (TB) is a widespread infectious disease caused by Mycobacterium tuberculosis. The increasing incidence of multidrug-resistant (MDR) and extensively drug-resistant (XDR) strains has created a need for new antiTB agents with new chemical scaffolds to combat the disease. Thus, the key question is: how to search for new antiTB and where to look for them? One of the possibilities is to search among natural products (NPs). In order to search for new antiTB drugs, the detailed phytochemical study of the whole Dicranostigma franchetianum plant was performed isolating wide spectrum of isoquinoline alkaloids (IAs). The chemical structures of the isolated alkaloids were determined by a combination of MS, HRMS, 1D, and 2D NMR techniques, and by comparison with literature data. Alkaloids were screened against Mycobacterium tuberculosis H37Ra and four other mycobacterial strains (M. aurum, M. avium, M. kansasii, and M. smegmatis). Alkaloids 3 and 5 showed moderate antimycobacterial activity against all tested strains (MICs 15.625-31.25 µg/mL). Furthermore, ten semisynthetic berberine (16a-16k) derivatives were developed and tested for antimycobacterial activity. In general, the derivatization of berberine was connected with a significant increase in antimycobacterial activity against all tested strains (MICs 0.39-7.81 µg/mL). Two derivatives (16e, 16k) were identified as compounds with micromolar MICs against M. tuberculosis H37Ra (MIC 2.96 and 2.78 µM). All compounds were also evaluated for their in vitro hepatotoxicity on a hepatocellular carcinoma cell line (HepG2), exerting lower cytotoxicity profile than their MIC values, thereby potentially reaching an effective concentration without revealing toxic side effects.


Subject(s)
Berberine , Mycobacterium tuberculosis , Papaveraceae , Tuberculosis , Anti-Bacterial Agents/pharmacology , Berberine/pharmacology , Humans , Microbial Sensitivity Tests
3.
Molecules ; 26(19)2021 Oct 04.
Article in English | MEDLINE | ID: mdl-34641567

ABSTRACT

The search for novel antimycobacterial drugs is a matter of urgency, since tuberculosis is still one of the top ten causes of death from a single infectious agent, killing more than 1.4 million people worldwide each year. Nine Amaryllidaceae alkaloids (AAs) of various structural types have been screened for their antimycobacterial activity. Unfortunately, all were considered inactive, and thus a pilot series of aromatic esters of galanthamine, 3-O-methylpancracine, vittatine and maritidine were synthesized to increase biological activity. The semisynthetic derivatives of AAs were screened for their in vitro antimycobacterial activity against Mycobacterium tuberculosis H37Ra and two other mycobacterial strains (M. aurum, M. smegmatis) using a modified Microplate Alamar Blue Assay. The most active compounds were also studied for their in vitro hepatotoxicity on the hepatocellular carcinoma cell line HepG2. In general, the derivatization of the original AAs was associated with a significant increase in antimycobacterial activity. Several pilot derivatives were identified as compounds with micromolar MICs against M. tuberculosis H37Ra. Two derivatives of galanthamine, 1i and 1r, were selected for further structure optimalization to increase the selectivity index.


Subject(s)
Amaryllidaceae Alkaloids/chemical synthesis , Anti-Bacterial Agents/chemical synthesis , Mycobacterium tuberculosis/drug effects , Amaryllidaceae Alkaloids/adverse effects , Amaryllidaceae Alkaloids/pharmacology , Anti-Bacterial Agents/adverse effects , Anti-Bacterial Agents/pharmacology , Hep G2 Cells , Humans , Microbial Sensitivity Tests
4.
Bioorg Med Chem Lett ; 51: 128374, 2021 11 01.
Article in English | MEDLINE | ID: mdl-34555506

ABSTRACT

Alzheimers disease (AD) is the most common neurodegenerative disorder, characterized by neuronal loss and cognitive impairment. Currently, very few drugs are available for AD treatment, and a search for new therapeutics is urgently needed. Thus, in the current study, twenty-eight new derivatives of montanine-type Amaryllidaceae alkaloids were synthesized and evaluated for their ability to inhibit human recombinant acetylcholinesterase (hAChE) and butyrylcholinesterase (hBuChE). Three derivatives (1n, 1o, and 1p) with different substitution patterns demonstrated significant selective inhibitory potency for hAChE (IC50 < 5 µM), and one analog, 1v, showed selective hBuChE inhibition activity (IC50 = 1.73 ± 0.05 µM). The prediction of CNS availability, as disclosed by the BBB score, suggests that the active compounds in this survey should be able pass through the blood-brain barrier (BBB). Cytotoxicity screening and docking studies were carried out for the two most pronounced cholinesterase inhibitors, 1n and 1v.


Subject(s)
Alkaloids/pharmacology , Alzheimer Disease/drug therapy , Cholinesterase Inhibitors/pharmacology , Isoquinolines/pharmacology , Molecular Docking Simulation , Acetylcholinesterase/metabolism , Alkaloids/chemical synthesis , Alkaloids/chemistry , Alzheimer Disease/metabolism , Blood-Brain Barrier/drug effects , Blood-Brain Barrier/metabolism , Butyrylcholinesterase/metabolism , Cholinesterase Inhibitors/chemical synthesis , Cholinesterase Inhibitors/chemistry , Dose-Response Relationship, Drug , Humans , Isoquinolines/chemical synthesis , Isoquinolines/chemistry , Molecular Structure , Structure-Activity Relationship
5.
Molecules ; 26(5)2021 Feb 26.
Article in English | MEDLINE | ID: mdl-33652925

ABSTRACT

Two new minor Amaryllidaceae alkaloids were isolated from Hippeastrum × hybridum cv. Ferrari and Narcissus pseudonarcissus cv. Carlton. The chemical structures were identified by various spectroscopic (one- and two-dimensional (1D and 2D) NMR, circular dichroism (CD), high-resolution mass spectrometry (HRMS) and by comparison with literature data of similar compounds. Both isolated alkaloids were screened for their human acetylcholinesterase (hAChE) and butyrylcholinesterase (hBuChE) inhibition activity. One of the new compounds, a heterodimer alkaloid of narcikachnine-type, named narciabduliine (2), showed balanced inhibition potency for both studied enzymes, with IC50 values of 3.29 ± 0.73 µM for hAChE and 3.44 ± 0.02 µM for hBuChE. The accommodation of 2 into the active sites of respective enzymes was predicted using molecular modeling simulation.


Subject(s)
Alkaloids/chemistry , Amaryllidaceae Alkaloids/chemistry , Cholinesterase Inhibitors/chemistry , Cholinesterases/ultrastructure , Alkaloids/pharmacology , Alzheimer Disease , Amaryllidaceae Alkaloids/pharmacology , Butyrylcholinesterase/chemistry , Butyrylcholinesterase/ultrastructure , Catalytic Domain/drug effects , Cholinesterase Inhibitors/pharmacology , Cholinesterases/chemistry , Circular Dichroism , Humans , Molecular Docking Simulation , Molecular Structure , Structure-Activity Relationship
6.
Bioorg Chem ; 107: 104567, 2021 02.
Article in English | MEDLINE | ID: mdl-33387730

ABSTRACT

Twenty known Amaryllidaceae alkaloids of various structural types, and one undescribed alkaloid of narcikachnine-type, named narcieliine (3), have been isolated from fresh bulbs of Zephyranthes citrina. The chemical structures of the isolated alkaloids were elucidated by a combination of MS, HRMS, 1D and 2D NMR, and CD spectroscopic techniques, and by comparison with literature data. The absolute configuration of narcieliine (3) has also been determined. Compounds isolated in a sufficient quantity were evaluated for their in vitro acetylcholinesterase (AChE; E.C. 3.1.1.7), butyrylcholinesterase (BuChE; E.C. 3.1.1.8), and prolyl oligopeptidase (POP; E.C. 3.4.21.26) inhibition activities. Significant human AChE/BuChE (hAChE/hBuChE) inhibitory activity was demonstrated by the newly described alkaloid narcieliine (3), with IC50 values of 18.7 ± 2.3 µM and 1.34 ± 0.31 µM, respectively. This compound is also predicted to cross the blood-brain barrier (BBB) through passive diffusion. The in vitro data were further supported by in silico studies of 3 in the active site of hAChE/hBuChE.


Subject(s)
Alkaloids/chemistry , Amaryllidaceae/chemistry , Acetylcholinesterase/chemistry , Acetylcholinesterase/metabolism , Alkaloids/isolation & purification , Alkaloids/pharmacology , Alkaloids/therapeutic use , Alzheimer Disease/drug therapy , Alzheimer Disease/pathology , Amaryllidaceae/metabolism , Binding Sites , Blood-Brain Barrier/drug effects , Blood-Brain Barrier/metabolism , Butyrylcholinesterase/chemistry , Butyrylcholinesterase/metabolism , Catalytic Domain , Cholinesterase Inhibitors/chemistry , Cholinesterase Inhibitors/metabolism , Cholinesterase Inhibitors/pharmacology , Cholinesterase Inhibitors/therapeutic use , Humans , Kinetics , Magnetic Resonance Spectroscopy , Molecular Conformation , Molecular Docking Simulation , Structure-Activity Relationship
7.
Bioorg Chem ; 100: 103928, 2020 07.
Article in English | MEDLINE | ID: mdl-32450384

ABSTRACT

A novel series of aromatic esters (1a-1m) related to the Amaryllidaceae alkaloid (AA) haemanthamine were designed, synthesized and tested in vitro with particular emphasis on the treatment of neurodegenerative diseases. Some of the synthesized compounds revealed promising acetylcholinesterase (AChE) and butyrylcholinesterase (BuChE) inhibitory profile. Significant human AChE (hAChE) inhibition was demonstrated by 11-O-(3-nitrobenzoyl)haemanthamine (1j) with IC50value of 4.0 ± 0.3 µM. The strongest human BuChE (hBuChE) inhibition generated 1-O-(2-methoxybenzoyl)haemanthamine (1g) with IC50 value 3.3 ± 0.4 µM. Moreover, 11-O-(2-chlorbenzoyl)haemanthamine (1m) was able to inhibit both enzymes in dose-dependent manner. The mode of hAChE and hBuChE inhibition was minutely inspected using enzyme kinetic analysis in tandem with in silico experiments, the latter elucidating crucial interaction in 1j-, 1m-hAChE and 1g-, 1m-hBuChE complexes. The blood-brain barrier (BBB) permeability was investigated applying the parallel artificial membrane permeation assay (PAMPA) to predict the CNS availability of the compounds.


Subject(s)
Amaryllidaceae Alkaloids/chemistry , Amaryllidaceae/chemistry , Esters/chemistry , Phenanthridines/chemistry , Acetylcholinesterase/chemistry , Acetylcholinesterase/metabolism , Alzheimer Disease/drug therapy , Alzheimer Disease/pathology , Amaryllidaceae/metabolism , Amaryllidaceae Alkaloids/metabolism , Amaryllidaceae Alkaloids/therapeutic use , Binding Sites , Blood-Brain Barrier/drug effects , Blood-Brain Barrier/metabolism , Butyrylcholinesterase/chemistry , Butyrylcholinesterase/metabolism , Cholinesterase Inhibitors/chemical synthesis , Cholinesterase Inhibitors/metabolism , Cholinesterase Inhibitors/therapeutic use , Humans , Kinetics , Molecular Docking Simulation , Phenanthridines/metabolism , Phenanthridines/therapeutic use , Structure-Activity Relationship
8.
J Nat Prod ; 83(5): 1359-1367, 2020 05 22.
Article in English | MEDLINE | ID: mdl-32309949

ABSTRACT

A total of 20 derivatives (1-20) of the crinane-type alkaloid ambelline were synthesized. These semisynthetic derivatives were assessed for their potency to inhibit both acetylcholinesterase (AChE) and butyrylcholinesterase (BuChE). To predict central nervous system (CNS) availability, logBB was calculated, and the data correlated well with those obtained from the parallel artificial membrane permeability assay (PAMPA). All compounds should be able to permeate the blood-brain barrier (BBB) according to the obtained results. A total of 7 aromatic derivatives (5, 6, 7, 9, 10, 12, and 16) with different substitution patterns showed inhibitory potency against human serum BuChE (IC50 < 5 µM), highlighting the three top-ranked compounds as follows: 11-O-(1-naphthoyl)ambelline (16), 11-O-(2-methylbenzoyl)ambelline (6), and 11-O-(2-methoxybenzoyl)ambelline (9) with IC50 values of 0.10 ± 0.01, 0.28 ± 0.02, and 0.43 ± 0.04 µM, respectively. Notably, derivatives 6, 7, 9, and 16 displayed selective human BuChE (hBuChE) inhibition profiles with a selectivity index > 100. The in vitro results were supported by computational studies predicting plausible binding modes of the compounds in the active sites of hBuChE.


Subject(s)
Amaryllidaceae Alkaloids/chemical synthesis , Amaryllidaceae Alkaloids/pharmacology , Amaryllidaceae/chemistry , Butyrylcholinesterase/drug effects , Cholinesterase Inhibitors/chemical synthesis , Cholinesterase Inhibitors/pharmacology , Amaryllidaceae Alkaloids/pharmacokinetics , Blood-Brain Barrier , Cholinesterase Inhibitors/pharmacokinetics , Esters , Humans , Models, Molecular , Molecular Docking Simulation , Molecular Structure , Substrate Specificity
9.
Molecules ; 24(7)2019 Apr 03.
Article in English | MEDLINE | ID: mdl-30987121

ABSTRACT

Twelve derivatives 1a-1m of the ß-crinane-type alkaloid haemanthamine were developed. All the semisynthetic derivatives were studied for their inhibitory potential against both acetylcholinesterase and butyrylcholinesterase. In addition, glycogen synthase kinase 3ß (GSK-3ß) inhibition potency was evaluated in the active derivatives. In order to reveal the availability of the drugs to the CNS, we elucidated the potential of selected derivatives to penetrate through the blood-brain barrier (BBB). Two compounds, namely 11-O-(2-methylbenzoyl)-haemanthamine (1j) and 11-O-(4-nitrobenzoyl)-haemanthamine (1m), revealed the most intriguing profile, both being acetylcholinesterase (hAChE) inhibitors on a micromolar scale, with GSK-3ß inhibition properties, and predicted permeation through the BBB. In vitro data were further corroborated by detailed inspection of the compounds' plausible binding modes in the active sites of hAChE and hBuChE, which led us to provide the structural determinants responsible for the activity towards these enzymes.


Subject(s)
Alzheimer Disease/metabolism , Amaryllidaceae Alkaloids/chemistry , Amaryllidaceae Alkaloids/metabolism , Amaryllidaceae/chemistry , Amaryllidaceae/metabolism , Phenanthridines/chemistry , Phenanthridines/metabolism , Blood-Brain Barrier/metabolism , Glycogen Synthase Kinase 3 beta/metabolism , Humans , Ligands , Models, Molecular , Molecular Conformation , Molecular Docking Simulation , Molecular Structure , Permeability , Structure-Activity Relationship
SELECTION OF CITATIONS
SEARCH DETAIL
...