Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 6 de 6
Filter
Add more filters










Database
Language
Publication year range
1.
BMC Genomics ; 17(1): 924, 2016 11 16.
Article in English | MEDLINE | ID: mdl-27852217

ABSTRACT

BACKGROUND: While a few studies on the variations in mRNA expression and half-lives measured under different growth conditions have been used to predict patterns of regulation in bacterial organisms, the extent to which this information can also play a role in defining metabolic phenotypes has yet to be examined systematically. Here we present the first comprehensive study for a model methanogen. RESULTS: We use expression and half-life data for the methanogen Methanosarcina acetivorans growing on fast- and slow-growth substrates to examine the regulation of its genes. Unlike Escherichia coli where only small shifts in half-lives were observed, we found that most mRNA have significantly longer half-lives for slow growth on acetate compared to fast growth on methanol or trimethylamine. Interestingly, half-life shifts are not uniform across functional classes of enzymes, suggesting the existence of a selective stabilization mechanism for mRNAs. Using the transcriptomics data we determined whether transcription or degradation rate controls the change in transcript abundance. Degradation was found to control abundance for about half of the metabolic genes underscoring its role in regulating metabolism. Genes involved in half of the metabolic reactions were found to be differentially expressed among the substrates suggesting the existence of drastically different metabolic phenotypes that extend beyond just the methanogenesis pathways. By integrating expression data with an updated metabolic model of the organism (iST807) significant differences in pathway flux and production of metabolites were predicted for the three growth substrates. CONCLUSIONS: This study provides the first global picture of differential expression and half-lives for a class II methanogen, as well as provides the first evidence in a single organism that drastic genome-wide shifts in RNA half-lives can be modulated by growth substrate. We determined which genes in each metabolic pathway control the flux and classified them as regulated by transcription (e.g. transcription factor) or degradation (e.g. post-transcriptional modification). We found that more than half of genes in metabolism were controlled by degradation. Our results suggest that M. acetivorans employs extensive post-transcriptional regulation to optimize key metabolic steps, and more generally that degradation could play a much greater role in optimizing an organism's metabolism than previously thought.


Subject(s)
Genome, Archaeal , Methanosarcina/genetics , RNA/metabolism , Dactinomycin/pharmacology , Gene Expression , Half-Life , Metabolic Networks and Pathways , Methanol/metabolism , Methanosarcina/classification , Methanosarcina/metabolism , Models, Biological , Phenotype , Protein Synthesis Inhibitors/pharmacology , RNA/isolation & purification , RNA, Messenger/metabolism , Sequence Analysis, RNA , Transcription, Genetic/drug effects
2.
Archaea ; 2014: 898453, 2014.
Article in English | MEDLINE | ID: mdl-24729742

ABSTRACT

Progress towards a complete model of the methanogenic archaeum Methanosarcina acetivorans is reported. We characterized size distribution of the cells using differential interference contrast microscopy, finding them to be ellipsoidal with mean length and width of 2.9 µ m and 2.3 µ m, respectively, when grown on methanol and 30% smaller when grown on acetate. We used the single molecule pull down (SiMPull) technique to measure average copy number of the Mcr complex and ribosomes. A kinetic model for the methanogenesis pathways based on biochemical studies and recent metabolic reconstructions for several related methanogens is presented. In this model, 26 reactions in the methanogenesis pathways are coupled to a cell mass production reaction that updates enzyme concentrations. RNA expression data (RNA-seq) measured for cell cultures grown on acetate and methanol is used to estimate relative protein production per mole of ATP consumed. The model captures the experimentally observed methane production rates for cells growing on methanol and is most sensitive to the number of methyl-coenzyme-M reductase (Mcr) and methyl-tetrahydromethanopterin:coenzyme-M methyltransferase (Mtr) proteins. A draft transcriptional regulation network based on known interactions is proposed which we intend to integrate with the kinetic model to allow dynamic regulation.


Subject(s)
Computer Simulation , Metabolic Flux Analysis , Metabolic Networks and Pathways , Methane/metabolism , Methanosarcina/cytology , Methanosarcina/metabolism , Methanol/metabolism
3.
Front Microbiol ; 3: 259, 2012.
Article in English | MEDLINE | ID: mdl-22837755

ABSTRACT

The discovery of the third domain of life, the Archaea, is one of the most exciting findings of the last century. These remarkable prokaryotes are well known for their adaptations to extreme environments; however, Archaea have also conquered moderate environments. Many of the archaeal biochemical processes, such as methane production, are unique in nature and therefore of great scientific interest. Although formerly restricted to biochemical and physiological studies, sophisticated systems for genetic manipulation have been developed during the last two decades for methanogenic archaea, halophilic archaea and thermophilic, sulfur-metabolizing archaea. The availability of these tools has allowed for more complete studies of archaeal physiology and metabolism and most importantly provides the basis for the investigation of gene expression, regulation and function. In this review we provide an overview of methods for genetic manipulation of Methanosarcina spp., a group of methanogenic archaea that are key players in the global carbon cycle and which can be found in a variety of anaerobic environments.

4.
J Bacteriol ; 193(19): 5155-63, 2011 Oct.
Article in English | MEDLINE | ID: mdl-21784930

ABSTRACT

Sinorhizobium meliloti, the nitrogen-fixing symbiont of alfalfa, has the ability to catabolize myo-, scyllo-, and D-chiro-inositol. Functional inositol catabolism (iol) genes are required for growth on these inositol isomers, and they play a role during plant-bacterium interactions. The inositol catabolism genes comprise the chromosomally encoded iolA (mmsA) and the iolY(smc01163)RCDEB genes, as well as the idhA gene located on the pSymB plasmid. Reverse transcriptase assays showed that the iolYRCDEB genes are transcribed as one operon. The iol genes were weakly expressed without induction, but their expression was strongly induced by myo-inositol. The putative transcriptional regulator of the iol genes, IolR, belongs to the RpiR-like repressor family. Electrophoretic mobility shift assays demonstrated that IolR recognized a conserved palindromic sequence (5'-GGAA-N6-TTCC-3') in the upstream regions of the idhA, iolY, iolR, and iolC genes. Complementation assays found IolR to be required for the repression of its own gene and for the downregulation of the idhA-encoded myo-inositol dehydrogenase activity in the presence and absence of inositol. Further expression studies indicated that the late pathway intermediate 2-keto-5-deoxy-D-gluconic acid 6-phosphate (KDGP) functions as the true inducer of the iol genes. The iolA (mmsA) gene encoding methylmalonate semialdehyde dehydrogenase was not regulated by IolR. The S. meliloti iolA (mmsA) gene product seems to be involved in more than only the inositol catabolic pathway, since it was also found to be essential for valine catabolism, supporting its more recent annotation as mmsA.


Subject(s)
Bacterial Proteins/metabolism , Inositol/metabolism , Repressor Proteins/metabolism , Sinorhizobium meliloti/metabolism , Bacterial Proteins/genetics , Electrophoretic Mobility Shift Assay , Gene Expression Regulation, Bacterial/genetics , Gene Expression Regulation, Bacterial/physiology , Genetic Complementation Test , Methylmalonate-Semialdehyde Dehydrogenase (Acylating)/genetics , Methylmalonate-Semialdehyde Dehydrogenase (Acylating)/metabolism , Protein Binding/genetics , Protein Binding/physiology , Repressor Proteins/genetics , Reverse Transcriptase Polymerase Chain Reaction , Sinorhizobium meliloti/enzymology , Sinorhizobium meliloti/genetics , Sinorhizobium meliloti/growth & development
5.
Appl Environ Microbiol ; 76(24): 7972-80, 2010 Dec.
Article in English | MEDLINE | ID: mdl-20971862

ABSTRACT

The nitrogen-fixing symbiont of alfalfa, Sinorhizobium meliloti, is able to use myo-inositol as the sole carbon source. Putative inositol catabolism genes (iolA and iolRCDEB) have been identified in the S. meliloti genome based on their similarities with the Bacillus subtilis iol genes. In this study, functional mutational analysis revealed that the iolA and iolCDEB genes are required for growth not only with the myo-isomer but also for growth with scyllo- and d-chiro-inositol as the sole carbon source. An additional, hypothetical dehydrogenase of the IdhA/MocA/GFO family encoded by the smc01163 gene was found to be essential for growth with scyllo-inositol, whereas the idhA-encoded myo-inositol dehydrogenase was responsible for the oxidation of d-chiro-inositol. The putative regulatory iolR gene, located upstream of iolCDEB, encodes a repressor of the iol genes, negatively regulating the activity of the myo- and the scyllo-inositol dehydrogenases. Mutants with insertions in the iolA, smc01163, and individual iolRCDE genes could not compete against the wild type in a nodule occupancy assay on alfalfa plants. Thus, a functional inositol catabolic pathway and its proper regulation are important nutritional or signaling factors in the S. meliloti-alfalfa symbiosis.


Subject(s)
Inositol/metabolism , Medicago sativa/microbiology , Plant Root Nodulation , Sinorhizobium meliloti/physiology , DNA Mutational Analysis , DNA, Bacterial/genetics , Gene Expression Regulation, Bacterial , Genes, Bacterial , Metabolic Networks and Pathways/genetics , Multigene Family , Sinorhizobium meliloti/metabolism
6.
Bioorg Med Chem ; 16(16): 7838-42, 2008 Aug 15.
Article in English | MEDLINE | ID: mdl-18678499

ABSTRACT

Rhizopines such as scyllo-inosamine (SIA) and L-3-O-methyl-scyllo-inosamine (3-O-MSI) play an intricate role as nutritional mediators during the establishment of the symbiotic relationship between legumes and rhizobia. The mechanism of action is not well understood. One challenge is the availability of rhizopines, which occur in only minute amounts in plant nodules. We herewith report an efficient synthesis of scyllo-inosamine and its biochemical activity in specific bacteria. SIA was prepared in 7 steps and 32% overall yield from readily available myo-inositol. The chemically synthesized SIA was tested to determine whether it can serve as sole carbon and nitrogen source for Sinorhizobium meliloti wild-type strain L5-30 and for strains carrying mutations in the rhizopine degradation (moc) genes. The analysis of the phenotype of the mutant strains revealed that the moc genes previously shown to be essential for the breakdown of the rhizopines isolated from root nodules are also essential for the utilization of the chemically synthesized SIA.


Subject(s)
Amino Sugars/chemical synthesis , Amino Sugars/metabolism , Inositol/analogs & derivatives , Sinorhizobium meliloti/metabolism , Amino Sugars/chemistry , DNA, Bacterial/chemistry , DNA, Bacterial/genetics , Inositol/chemical synthesis , Inositol/chemistry , Inositol/metabolism , Magnetic Resonance Spectroscopy , Mutagenesis, Insertional , Polymerase Chain Reaction , Sinorhizobium meliloti/genetics , Spectroscopy, Fourier Transform Infrared
SELECTION OF CITATIONS
SEARCH DETAIL
...