Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 12 de 12
Filter
1.
Tuberculosis (Edinb) ; 142: 102380, 2023 09.
Article in English | MEDLINE | ID: mdl-37543009

ABSTRACT

Whole-genome sequencing (WGS) can predict drug resistance and antimicrobial susceptibility in Mycobacterium tuberculosis complex (MTBC) and has shown promise in partially replacing culture-based phenotypic drug susceptibility testing (pDST). We performed a two-year side by side study comparing the prediction of drug resistance and antimicrobial susceptibility by WGS molecular DST (mDST) to pDST to determine resistance at the critical concentration by Mycobacterial Growth Indicator Tube (MGIT) and agar proportion testing. Negative predictive values of WGS results were consistently high for the first-line drugs: rifampin (99.9%), isoniazid (99.0%), pyrazinamide (98.5%), and ethambutol (99.8%); the rates of resistance to these drugs, among strains in our population, are 2.9%, 10.4%, 46.3%, and 2.3%, respectively. WGS results were available an average 8 days earlier than first-line MGIT pDST. Based on these findings, we implemented a new testing algorithm with an updated WGS workflow in which strains predicted pan-susceptible were no longer tested by pDST. This algorithm was applied to 1177 isolates between October 2018 and September 2020, eliminating pDST for 66.6% of samples and reducing pDST for an additional 22.0%. This algorithm change resulted in faster turnaround times and decreased cost while maintaining comprehensive antimicrobial susceptibility profiles of all culture-positive MTBC cases in New York.


Subject(s)
Mycobacterium tuberculosis , Tuberculosis, Multidrug-Resistant , Humans , Antitubercular Agents/pharmacology , Antitubercular Agents/therapeutic use , Mycobacterium tuberculosis/genetics , New York , Microbial Sensitivity Tests , Isoniazid , Algorithms , Tuberculosis, Multidrug-Resistant/diagnosis , Tuberculosis, Multidrug-Resistant/drug therapy , Tuberculosis, Multidrug-Resistant/microbiology
2.
Microbiol Spectr ; : e0431722, 2023 Mar 28.
Article in English | MEDLINE | ID: mdl-36975781

ABSTRACT

Vancomycin-resistant Staphylococcus aureus (VRSA) is a human pathogen of significant public health concern. Although the genome sequences of individual VRSA isolates have been published over the years, very little is known about the genetic changes of VRSA within a patient over time. A total of 11 VRSA, 3 vancomycin-resistant enterococci (VRE), and 4 methicillin-resistant S. aureus (MRSA) isolates, collected over a period of 4.5 months in 2004 from a patient in a long-term-care facility in New York State, were sequenced. A combination of long- and short-read sequencing technologies was used to obtain closed assemblies for chromosomes and plasmids. Our results indicate that a VRSA isolate emerged as the result of the transfer of a multidrug resistance plasmid from a coinfecting VRE to an MRSA isolate. The plasmid then integrated into the chromosome via homologous recombination mediated between two regions derived from remnants of transposon Tn5405. Once integrated, the plasmid underwent further reorganization in one isolate, while two others lost the staphylococcal cassette chromosome mec element (SCCmec) determinant that confers methicillin-resistance. The results presented here explain how a few recombination events can lead to multiple pulsed-field gel electrophoresis (PFGE) patterns that could be mistaken for vastly different strains. A vanA gene cluster that is located on a multidrug resistance plasmid that is integrated into the chromosome could result in the continuous propagation of resistance, even in the absence of selective pressure from antibiotics. The genome comparison presented here sheds light on the emergence and evolution of VRSA within a single patient that will enhance our understanding VRSA genetics. IMPORTANCE High-level vancomycin-resistant Staphylococcus aureus (VRSA) began to emerge in the United States in 2002 and has since then been reported worldwide. Our study reports the closed genome sequences of multiple VRSA isolates obtained in 2004 from a single patient in New York State. Our results show that the vanA resistance locus is located on a mosaic plasmid that confers resistance to multiple antibiotics. In some isolates, this plasmid integrated into the chromosome via homologous recombination between two ant(6)-sat4-aph(3') antibiotic resistance loci. This is, to our knowledge, the first report of a chromosomal vanA locus in VRSA; the effect of this integration event on MIC values and plasmid stability in the absence of antibiotic selection remains poorly understood. These findings highlight the need for a better understanding of the genetics of the vanA locus and plasmid maintenance in S. aureus to address the increase of vancomycin resistance in the health care setting.

3.
Front Microbiol ; 13: 992610, 2022.
Article in English | MEDLINE | ID: mdl-36299734

ABSTRACT

Nontuberculous mycobacteria (NTM) are environmental bacteria commonly found in soil and water in almost every part of the world. While usually non-pathogenic, they can cause acute respiratory and cutaneous infections under certain circumstances or in patients with underlying medical conditions. Contrary to members of the Mycobacterium tuberculosis complex, documented human-to-human transmissions of NTM have been rarely reported and most cases result from direct environmental exposure. Here we describe the identification of a new NTM species isolated from a hand laceration of a New York State patient after a fall. This new NTM forms rough, orange pigmented colonies and is naturally resistant to doxycycline and tobramycin. Whole genome analysis reveal no close relatives present in public databases, and our findings are in accordance with the recognition of a new taxonomic species of NTM. We propose the name Mycobacterium salfingeri sp. nov. for this new NTM representative. The type strain is 20-157661T (DSM = 113368T, BCCM = ITM 501207T).

4.
Emerg Infect Dis ; 28(7): 1431-1436, 2022 07.
Article in English | MEDLINE | ID: mdl-35731170

ABSTRACT

We report the unusual genotypic characterization of a bacterium isolated from a clinical sample of a patient who grew up in Bangladesh and lives in the United States. Using whole-genome sequencing, we identified the bacterium as a member of the Mycobacterium tuberculosis complex (MTBC). Phylogenetic placement of this strain suggests a new MTBC genotype. Even though it had the same spoligotype as M. caprae strains, single-nucleotide polymorphism-based phylogenetic analysis placed the isolate as a sister lineage distinct from M. caprae, most closely related to 5 previously sequenced genomes isolated from primates and elephants in Asia. We propose a new animal-associated lineage, La4, within MTBC.


Subject(s)
Mycobacterium tuberculosis , Animals , Bangladesh/epidemiology , Genotype , Humans , Mycobacterium tuberculosis/genetics , Phylogeny , Whole Genome Sequencing
5.
J Clin Microbiol ; 59(4)2021 03 19.
Article in English | MEDLINE | ID: mdl-32999007

ABSTRACT

Rapid and reliable detection of rifampin (RIF) resistance is critical for the diagnosis and treatment of drug-resistant and multidrug-resistant (MDR) tuberculosis. Discordant RIF phenotype/genotype susceptibility results remain a challenge due to the presence of rpoB mutations that do not confer high levels of RIF resistance, as have been exhibited in strains with mutations such as Ser450Leu. These strains, termed low-level RIF resistant, exhibit elevated RIF MICs compared to fully susceptible strains but remain phenotypically susceptible by mycobacterial growth indicator tube (MGIT) testing and have been associated with poor patient outcomes. Here, we assess RIF resistance prediction by whole-genome sequencing (WGS) among a set of 1,779 prospectively tested strains by both prevalence of rpoB gene mutation and phenotype as part of routine clinical testing during a 2.5-year period. During this time, 139 strains were found to have nonsynonymous rpoB mutations, 53 of which were associated with RIF resistance, including both low-level and high-level resistance. Resistance to RIF (1.0 µg/ml in MGIT) was identified in 43 (81.1%) isolates. The remaining 10 (18.9%) strains were susceptible by MGIT but were confirmed to be low-level RIF resistant by MIC testing. Full rpoB gene sequencing overcame the limitations of critical concentration phenotyping, probe-based genotyping, and partial gene sequencing methods. Universal clinical WGS with concurrent phenotypic testing provided a more complete understanding of the prevalence and type of rpoB mutations and their association with RIF resistance in New York.


Subject(s)
Mycobacterium tuberculosis , Pharmaceutical Preparations , Tuberculosis, Multidrug-Resistant , Antitubercular Agents/pharmacology , Bacterial Proteins/genetics , DNA-Directed RNA Polymerases/genetics , Drug Resistance, Bacterial/genetics , Humans , Microbial Sensitivity Tests , Mutation , Mycobacterium tuberculosis/genetics , New York , Rifampin/pharmacology
6.
J Clin Microbiol ; 55(6): 1871-1882, 2017 06.
Article in English | MEDLINE | ID: mdl-28381603

ABSTRACT

Whole-genome sequencing (WGS) is a newer alternative for tuberculosis (TB) diagnostics and is capable of providing rapid drug resistance profiles while performing species identification and capturing the data necessary for genotyping. Our laboratory developed and validated a comprehensive and sensitive WGS assay to characterize Mycobacterium tuberculosis and other M. tuberculosis complex (MTBC) strains, composed of a novel DNA extraction, optimized library preparation, paired-end WGS, and an in-house-developed bioinformatics pipeline. This new assay was assessed using 608 MTBC isolates, with 146 isolates during the validation portion of this study and 462 samples received prospectively. In February 2016, this assay was implemented to test all clinical cases of MTBC in New York State, including isolates and early positive Bactec mycobacterial growth indicator tube (MGIT) 960 cultures from primary specimens. Since the inception of the assay, we have assessed the accuracy of identification of MTBC strains to the species level, concordance with culture-based drug susceptibility testing (DST), and turnaround time. Species identification by WGS was determined to be 99% accurate. Concordance between drug resistance profiles generated by WGS and culture-based DST methods was 96% for eight drugs, with an average resistance-predictive value of 93% and susceptible-predictive value of 96%. This single comprehensive WGS assay has replaced seven molecular assays and has resulted in resistance profiles being reported to physicians an average of 9 days sooner than with culture-based DST for first-line drugs and 32 days sooner for second-line drugs.


Subject(s)
Drug Resistance, Bacterial , Genotyping Techniques/methods , Microbial Sensitivity Tests/methods , Mycobacterium tuberculosis/genetics , Tuberculosis/diagnosis , Whole Genome Sequencing/methods , Computational Biology/methods , Humans , New York , Prospective Studies , Retrospective Studies , Tuberculosis/microbiology
7.
Public Health Rep ; 130(6): 623-31, 2015.
Article in English | MEDLINE | ID: mdl-26556934

ABSTRACT

OBJECTIVE: The need for public health laboratories (PHLs) to prioritize resources has led to increased interest in sharing diagnostic services. To address this concept for tuberculosis (TB) testing, the New York State Department of Health Wadsworth Center and the Rhode Island State Health Laboratories assessed the feasibility of shared services for the detection and characterization of Mycobacterium tuberculosis complex (MTBC). METHODS: We assessed multiple aspects of shared services including shipping, testing, reporting, and cost. Rhode Island State Health Laboratories shipped MTBC-positive specimens and isolates to Wadsworth Center. Average turnaround times were calculated and cost analysis was performed. RESULTS: Testing turnaround times were similar at both PHLs; however, the availability of conventional drug susceptibility testing (DST) results for Rhode Island primary specimens and isolates were extended by approximately four days of shipping time. An extended molecular testing panel was performed on every specimen submitted from Rhode Island State Health Laboratories to Wadsworth Center, and the total cost per specimen at Wadsworth Center was $177.12 less than at Rhode Island State Health Laboratories, plus shipping. Following a mid-study review, Wadsworth Center provided testing turnaround times for detection (same day), species determination of MTBC (same day), and molecular DST (2.5 days). CONCLUSION: The collaboration between Wadsworth Center and Rhode Island State Health Laboratories to assess shared services of TB testing highlighted a successful model that may serve as a guideline for other PHLs. The provision of additional rapid testing at a lower cost demonstrated in this study could potentially improve patient management and result in significant cost and resource savings if used in similar models across the country.


Subject(s)
Hospital Shared Services/economics , Laboratories/economics , Microbiological Phenomena , Bacteriological Techniques , Costs and Cost Analysis , Efficiency , Feasibility Studies , Mycobacterium tuberculosis/isolation & purification , Mycology , New York , Rhode Island , Time Factors
8.
Int J Syst Evol Microbiol ; 63(Pt 4): 1323-1328, 2013 Apr.
Article in English | MEDLINE | ID: mdl-22798652

ABSTRACT

A polyphasic analysis was undertaken of seven independent isolates of gram-negative cocci collected from pathological clinical samples from New York, Louisiana, Florida and Illinois and healthy subgingival plaque from a patient in Virginia, USA. The 16S rRNA gene sequence similarity among these isolates was 99.7-100 %, and the closest species with a validly published name was Neisseria lactamica (96.9 % similarity to the type strain). DNA-DNA hybridization confirmed that these isolates are of the same species and are distinct from their nearest phylogenetic neighbour, N. lactamica. Phylogenetic analysis of 16S and 23S rRNA gene sequences indicated that the novel species belongs in the genus Neisseria. The predominant cellular fatty acids were C16 : 0, summed feature 3 (C16 : 1ω7c and/or iso-C15 : 0 2-OH) and C18 : 1ω7c. The cellular fatty acid profile, together with other phenotypic characters, further supports the inclusion of the novel species in the genus Neisseria. The name Neisseria oralis sp. nov. (type strain 6332(T)  = DSM 25276(T)  = LMG 26725(T)) is proposed.


Subject(s)
Dental Plaque/microbiology , Gingiva/microbiology , Neisseria/classification , Phylogeny , Bacterial Typing Techniques , DNA, Bacterial/genetics , Fatty Acids/analysis , Humans , Molecular Sequence Data , Neisseria/genetics , Neisseria/isolation & purification , Nucleic Acid Hybridization , RNA, Ribosomal, 16S/genetics , RNA, Ribosomal, 23S/genetics , Sequence Analysis, DNA , United States
9.
Mol Cell Probes ; 27(2): 86-9, 2013 Apr.
Article in English | MEDLINE | ID: mdl-23195602

ABSTRACT

Our laboratory has developed a simple two-step multiplex real-time PCR for use on isolates of Haemophilus influenzae for molecular serotype identification and the detection of capsular gene targets. The assay consists of a 2-plex real-time PCR targeting the capsule transport gene (bexA), and serotype b specific gene (bcsB), and a 5-plex real-time PCR detecting serotypes a, c, d, e, and f targeting Region II serotype-specific genes. Both real-time PCR assays are highly sensitive (<8 CFU) for all serotypes and 100% specific when tested by a panel of more than 40 bacterial organisms. A retrospective study of 214 isolates received between 1998 and 2011 were tested and compared against the traditional slide agglutination test (SAT) resulting in 100% concordance. We demonstrate that this two-step real-time PCR approach is more sensitive than previously published PCR assays and provides a simple alternative to the SAT. Reliable, rapid and sensitive H. influenzae serotyping is critical for identifying new emerging strains for epidemiological surveillance.


Subject(s)
Bacterial Typing Techniques/methods , Haemophilus influenzae/classification , Haemophilus influenzae/genetics , Real-Time Polymerase Chain Reaction/methods , Agglutination Tests , Molecular Typing , Retrospective Studies , Sensitivity and Specificity , Serotyping/methods
10.
Int J Syst Evol Microbiol ; 62(Pt 1): 49-54, 2012 Jan.
Article in English | MEDLINE | ID: mdl-21317274

ABSTRACT

An analysis of 16S rRNA gene sequences from archived clinical reference specimens identified a novel species of the genus Psychrobacter, of which four strains have been independently isolated from human blood. On the basis of 16S rRNA gene sequence similarity, the closest relatives with validly published names were Psychrobacter arenosus R7(T) (98.7%), P. pulmonis CECT 5989(T) (97.7%), P. faecalis Iso-46(T) (97.6%) and P. lutiphocae IMMIB L-1110(T) (97.2%). Maximum-likelihood phylogenetic analysis of 16S rRNA gene sequences showed that the isolates belonged to the genus Psychrobacter and were members of a cluster associated with Psychrobacter sp. PRwf-1, isolated from a silk snapper fish. DNA-DNA relatedness and partial 23S rRNA gene sequences also supported the finding that the isolates belonged to a species distinct from its closest phylogenetic neighbours. The predominant cellular fatty acids were C(18:1)ω9c, C(16:0), summed feature 3 (C(16:1)ω7c and/or iso-C(15:0) 2-OH), summed feature 5 (C(18:2)ω6,9c and/or anteiso-C(18:0)) and C(18:0). Biochemical and morphological analysis further supported the assignment of the four isolates to a novel species. The name Psychrobacter sanguinis sp. nov. is proposed. The type strain is 13983(T) (=DSM 23635(T)=CCUG 59771(T)).


Subject(s)
Moraxellaceae Infections/microbiology , Psychrobacter/classification , Psychrobacter/isolation & purification , Bacteremia/microbiology , Bacterial Typing Techniques , Blood/microbiology , Cluster Analysis , DNA, Bacterial/chemistry , DNA, Bacterial/genetics , DNA, Ribosomal/chemistry , DNA, Ribosomal/genetics , Fatty Acids/analysis , Humans , Molecular Sequence Data , Nucleic Acid Hybridization , Phylogeny , Psychrobacter/genetics , Psychrobacter/physiology , RNA, Ribosomal, 16S/genetics , RNA, Ribosomal, 23S/genetics , Sequence Analysis, DNA
11.
Int J Syst Evol Microbiol ; 61(Pt 1): 91-98, 2011 Jan.
Article in English | MEDLINE | ID: mdl-20173010

ABSTRACT

An analysis of 16S rRNA gene sequences from archived clinical reference specimens has identified two novel Neisseria species. For each species, two strains from independent sources were identified. Amongst species with validly published names, the closest species to the newly identified organisms were Neisseria canis, N. dentiae, N. zoodegmatis, N. animaloris and N. weaveri. DNA-DNA hybridization studies demonstrated that the newly identified isolates represent species that are distinct from these nearest neighbours. Analysis of partial 23S rRNA gene sequences for the newly identified strains and their nearest neighbours provided additional support for the species designation. Bayesian analysis of 16S rRNA gene sequences suggested that the newly identified isolates belong to distinct but related species of the genus Neisseria, and are members of a clade that includes N. dentiae, N. bacilliformis and N. canis. The predominant cellular fatty acids [16 : 0, summed feature 3 (16 : 1ω7c and/or iso-15 : 0 2-OH) and 18 : 1ω7c], as well as biochemical and morphological analyses further support the designation of Neisseria wadsworthii sp. nov. (type strain 9715(T) =DSM 22247(T) =CIP 109934(T)) and Neisseria shayeganii sp. nov. (type strain 871(T) =DSM 22246(T) =CIP 109933(T)).


Subject(s)
Neisseria/classification , Neisseria/isolation & purification , Neisseriaceae Infections/microbiology , Bacterial Typing Techniques , Cluster Analysis , DNA, Bacterial/chemistry , DNA, Bacterial/genetics , DNA, Ribosomal/chemistry , DNA, Ribosomal/genetics , Fatty Acids/analysis , Humans , Molecular Sequence Data , Neisseria/chemistry , Neisseria/genetics , Nucleic Acid Hybridization , Phylogeny , RNA, Ribosomal, 16S/genetics , RNA, Ribosomal, 23S/genetics , Sequence Analysis, DNA
12.
Antimicrob Agents Chemother ; 51(1): 231-8, 2007 Jan.
Article in English | MEDLINE | ID: mdl-17074796

ABSTRACT

Glycopeptides such as vancomycin are the treatment of choice for infections due to methicillin-resistant Staphylococcus aureus. This study describes the identification of high-level vancomycin-resistant S. aureus (VRSA) isolates in a polymicrobial biofilm within an indwelling nephrostomy tube in a patient in New York. S. aureus, Enterococcus faecalis, Enterococcus faecium, Micrococcus species, Morganella morganii, and Pseudomonas aeruginosa were isolated from the biofilm. For VRSA isolates, vancomycin MICs ranged from 32 to >128 microg/ml. VRSA isolates were also resistant to aminoglycosides, fluoroquinolones, macrolides, penicillin, and tetracycline but remained susceptible to chloramphenicol, linezolid, rifampin, and trimethoprim-sulfamethoxazole. The vanA gene was localized to a plasmid of approximately 100 kb in VRSA and E. faecium isolates from the biofilm. Plasmid analysis revealed that the VRSA isolate acquired the 100-kb E. faecium plasmid, which was then maintained without integration into the MRSA plasmid. The tetracycline resistance genes tet(U) and tet(S), not previously detected in S. aureus isolates, were identified in the VRSA isolates. Additional resistance elements in the VRSA isolate included a multiresistance gene cluster, ermB-aadE-sat4-aphA-3, msrA (macrolide efflux), and the bifunctional aminoglycoside resistance gene aac(6')-aph(2")-Ia. Multiple combinations of resistance genes among the various isolates of staphylococci and enterococci, including vanA, tet(S), and tet(U), illustrate the dynamic nature of gene acquisition and loss within and between bacterial species throughout the course of infection. The potential for interspecies transfer of antimicrobial resistance genes, including resistance to vancomycin, may be enhanced by the microenvironment of a biofilm.


Subject(s)
Biofilms/drug effects , Staphylococcus aureus/drug effects , Vancomycin Resistance/drug effects , Vancomycin/pharmacology , Acetamides/pharmacology , Aminoglycosides/pharmacology , Catheters, Indwelling/microbiology , Chloramphenicol/pharmacology , Drug Resistance, Multiple, Bacterial/genetics , Enterococcus faecalis/drug effects , Enterococcus faecium/drug effects , Female , Fluoroquinolones/pharmacology , Humans , Linezolid , Macrolides/pharmacology , Microbial Sensitivity Tests , Micrococcus/drug effects , Middle Aged , Morganella morganii/drug effects , Oxazolidinones/pharmacology , Penicillins/pharmacology , Pseudomonas aeruginosa/drug effects , Rifampin/pharmacology , Staphylococcus aureus/genetics , Tetracyclines/pharmacology , Trimethoprim, Sulfamethoxazole Drug Combination/pharmacology , Urinary Catheterization , Vancomycin Resistance/genetics
SELECTION OF CITATIONS
SEARCH DETAIL
...