Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
Nucleic Acids Res ; 51(12): 6120-6142, 2023 07 07.
Article in English | MEDLINE | ID: mdl-37158274

ABSTRACT

Iron metabolism is closely associated with the pathogenesis of obesity. However, the mechanism of the iron-dependent regulation of adipocyte differentiation remains unclear. Here, we show that iron is essential for rewriting of epigenetic marks during adipocyte differentiation. Iron supply through lysosome-mediated ferritinophagy was found to be crucial during the early stage of adipocyte differentiation, and iron deficiency during this period suppressed subsequent terminal differentiation. This was associated with demethylation of both repressive histone marks and DNA in the genomic regions of adipocyte differentiation-associated genes,  including Pparg, which encodes PPARγ, the master regulator of adipocyte differentiation. In addition, we identified several epigenetic demethylases to be responsible for iron-dependent adipocyte differentiation, with the histone demethylase jumonji domain-containing 1A and the DNA demethylase ten-eleven translocation 2 as the major enzymes. The interrelationship between repressive histone marks and DNA methylation was indicated by an integrated genome-wide association analysis, and was also supported by the findings that both histone and DNA demethylation were suppressed by either the inhibition of lysosomal ferritin flux or the knockdown of iron chaperone poly(rC)-binding protein 2. In summary, epigenetic regulations through iron-dependent control of epigenetic enzyme activities play an important role in the organized gene expression mechanisms of adipogenesis.


Subject(s)
Genome-Wide Association Study , Iron , Iron/metabolism , DNA Methylation/genetics , Epigenesis, Genetic , Adipocytes/metabolism , Jumonji Domain-Containing Histone Demethylases/genetics , Jumonji Domain-Containing Histone Demethylases/metabolism
2.
Sci Rep ; 11(1): 2253, 2021 01 26.
Article in English | MEDLINE | ID: mdl-33500526

ABSTRACT

Idiopathic pure red cell aplasia (PRCA) and secondary PRCA associated with thymoma and large granular lymphocyte leukemia are generally considered to be immune-mediated. The PRCA2004/2006 study showed that poor responses to immunosuppression and anemia relapse were associated with death. PRCA may represent the prodrome to MDS. Thus, clonal hematopoiesis may be responsible for treatment failure. We investigated gene mutations in myeloid neoplasm-associated genes in acquired PRCA. We identified 21 mutations affecting amino acid sequences in 11 of the 38 adult PRCA patients (28.9%) using stringent filtering of the error-prone sequences and SNPs. Four PRCA patients showed 7 driver mutations in TET2, DNMT3A and KDM6A, and 2 PRCA patients carried multiple mutations in TET2. Five PRCA patients had mutations with high VAFs exceeding 0.3. These results suggest that clonal hematopoiesis by stem/progenitor cells might be related to the pathophysiology of chronic PRCA in certain adult patients.


Subject(s)
Clonal Hematopoiesis , Red-Cell Aplasia, Pure/pathology , Adult , Aged , Aged, 80 and over , Anemia, Aplastic/genetics , Cell Line , Humans , Leukemia, Myeloid/genetics , Middle Aged , Mutation/genetics , Red-Cell Aplasia, Pure/genetics
3.
J Mol Biol ; 409(3): 415-26, 2011 Jun 10.
Article in English | MEDLINE | ID: mdl-21510959

ABSTRACT

Connectin is an elastic protein found in vertebrate striated muscle and in some invertebrates as connectin-like proteins. In this study, we determined the structure of the amphioxus connectin gene and analyzed its sequence based on its genomic information. Amphioxus is not a vertebrate but, phylogenetically, the lowest chordate. Analysis of gene structure revealed that the amphioxus gene is approximately 430 kb in length and consists of regions with exons of repeatedly aligned immunoglobulin (Ig) domains and regions with exons of fibronectin type 3 and Ig domain repeats. With regard to this sequence, although the region corresponding to the I-band is homologous to that of invertebrate connectin-like proteins and has an Ig-PEVK region similar to that of the Neanthes sp. 4000K protein, the region corresponding to the A-band has a super-repeat structure of Ig and fibronectin type 3 domains and a kinase domain near the C-terminus, which is similar to the structure of vertebrate connectin. These findings revealed that amphioxus connectin has the domain structure of invertebrate connectin-like proteins at its N-terminus and that of vertebrate connectin at its C-terminus. Thus, amphioxus connectin has a novel structure among known connectin-like proteins. This finding suggests that the formation and maintenance of the sarcomeric structure of amphioxus striated muscle are similar to those of vertebrates; however, its elasticity is different from that of vertebrates, being more similar to that of invertebrates.


Subject(s)
Chordata, Nonvertebrate/metabolism , Muscle Proteins/chemistry , Protein Kinases/chemistry , Animals , Base Sequence , Chordata, Nonvertebrate/genetics , Connectin , Exons , Fibronectins/genetics , Humans , Molecular Sequence Data , Muscle Proteins/genetics , Protein Kinases/genetics , Sequence Homology
SELECTION OF CITATIONS
SEARCH DETAIL
...