Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Nanomaterials (Basel) ; 10(5)2020 May 16.
Article in English | MEDLINE | ID: mdl-32429333

ABSTRACT

We have used focused ion beam irradiation to progressively cause defects in annealed molybdenum silicide thin films. Without the treatment, the films are superconducting with critical temperature of about 1 K. We observe that both resistivity and critical temperature increase as the ion dose is increased. For resistivity, the increase is almost linear, whereas critical temperature changes abruptly at the smallest doses and then remains almost constant at 4 K. We believe that our results originate from amorphization of the polycrystalline molybdenum silicide films.

2.
Inorg Chem ; 58(2): 1040-1047, 2019 Jan 22.
Article in English | MEDLINE | ID: mdl-30618251

ABSTRACT

Lithium oxosilicate was synthesized via the solid-state method using Li2O and SiO2 as starting reactants. In situ synchrotron powder X-ray diffraction (SPRXD) coupled with Rietveld refinement allowed describing the synthesis as a two-step process where Li2O and SiO2 react to form Li4SiO4 and, at higher temperatures, lithium orthosilicate reacts with the remaining Li2O to form Li8SiO6. Time-resolved measurements allowed determining the temperatures at which each phase transformation occurs as well as the time required to complete the synthesis. The CO2 capture properties of Li8SiO6 in the temperature range from room temperature to 770 °C were studied in detail by time-resolved in situ SPXRD. The crystallographic phases present during Li8SiO6 carbonation were identified and quantified via Rietveld analysis. Results showed that, within the temperature range from 200 to 690 °C, Li8SiO6 carbonation produces Li4SiO4 and Li2CO3, while, at temperatures from 690 to 750 °C, a secondary reaction occurs, where previously formed Li4SiO4 reacts with CO2, producing Li2SiO3 and Li2CO3. These findings allowed proposing a mechanism of reaction for Li8SiO6 carbonation in the temperature range that is of interest for high temperature solid-state sorbents.

SELECTION OF CITATIONS
SEARCH DETAIL