Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 29
Filter
Add more filters











Publication year range
1.
Small ; : e2400707, 2024 Aug 25.
Article in English | MEDLINE | ID: mdl-39183516

ABSTRACT

Graphene oxide (GO) has been attracting intensive attention as a flexible barrier film, however, provides no barrier for proton transfer due to its out-of-plane proton conductivity (10-6 S cm-1) based on nanoscale defects with oxygen functional groups. In this study, it is reported that a pore-free GO (Pf-GO) membrane with controlled oxygen functional groups exhibits unexpected proton blocking behavior (10-11 S cm-1). Proton permeation tests conducted in aqueous solution demonstrate that proton permeation is below the detection limit, and lithium metal foils coated with the Pf-GO show higher chemical stability to water than those coated with previously reported GO. The Pf-GO has periodic honeycomb atomic structure, which is found to impart the Pf-GO membrane with novel performance characteristics distinct from those of conventional GO.

2.
Small ; 19(12): e2206552, 2023 Mar.
Article in English | MEDLINE | ID: mdl-36642836

ABSTRACT

Bandgap tunable lanthanum niobium oxynitride [LaNb2 O7-x Nx ](1+x)- nanosheet is prepared by the delamination of a Ruddlesden-Popper phase perovskite oxynitride via ion-exchange and two-step intercalation processes. The lanthanum niobium oxynitride nanosheets have a homogeneous thickness of 1.6 nm and exhibit a variety of chromatic colors depending on the nitridation temperature of the parent-layered oxynitride. The bandgap energy of the nanosheets is determined by ultraviolet photoemission spectroscopy, Mott-Schottky, and photoelectrochemical measurements and is found to be tunable in the range of 2.03-2.63 eV. Furthermore, the oxide/oxynitride superlattice structures are fabricated by face-to-face stacking of 2D crystals using oxynitride [LaNb2 O7-x Nx ](1+x)- and oxide [Ca2 Nb3 O10 ]- nanosheets as building blocks. Moreover, the superlattices-like restacked oxynitride/oxide nanosheets hybrid exhibits unique proton conductivity and dielectric properties strongly influenced by the oxynitride nanosheets and enhanced photocatalytic activity under visible light irradiation.

3.
Macromol Rapid Commun ; 43(9): e2100912, 2022 May.
Article in English | MEDLINE | ID: mdl-35272396

ABSTRACT

An all-solid-state supercapacitor with no boundary between the electrode/electrolyte interface is prepared using methanesulfonic acid (MSA)-intercalated graphene oxide (GO) membranes as a proton-conducting electrolyte. The electrodes (reduced GO) are formed within the surface of the solid GO electrolyte by a combination of self-reduction of the GO under UV-light illumination and electrochemical reduction. In this process, the surface of the GO film is converted to an electrode material with mixed electron/proton conduction, which results in the formation of a seamless capacitor structure. The resultant capacitor shows a large capacitance of 33.8 mF cm-2 , 11.9 F g-1 (g: total weight of device including electrodes, electrolyte, separator and current collector), which is 15 times higher than the capacitance retention of an all-solid-state supercapacitor fabricated using proton-conducting GO film. The seamless structures for the electrode/electrolyte interface suppress the decomposition of the GO electrolyte by the local concentration of applied voltage, resulting in improved cycle stability. The very large capacitance is likely derived not only from the seamless structure but also from the high proton conductivity of the MSA-intercalated GO electrolyte (4.2 × 10-3  S cm-1 ).

4.
RSC Adv ; 11(26): 15927-15932, 2021 Apr 26.
Article in English | MEDLINE | ID: mdl-35481177

ABSTRACT

Electrocatalysts with metal-nitrogen-carbon (M-N-C) sites have recently attracted much attention as potential catalysts for the oxygen reduction reaction (ORR), and a hybrid of iron phthalocyanine (FePc) and reduced graphene oxide (rGO) is one of the promising candidates. Herein, a FePc/GO nanocomposite was synthesized by electrostatic deposition on the electrode. The electrochemically reduced FePc/GO nanocomposite (ER(FePc/GO)) contained Fe2+ centers in well reduced graphene sites without agglomeration. The ER(FePc/GO) exhibited high ORR activity with an ORR onset (E onset) and half-wave potential (E 1/2) of 0.97 and 0.86 V, respectively. Furthermore, the ORR activity successfully improved by adding an electrolyte such as KCl or KNO3. The small H2O2 yield of 2%, superior tolerance to methanol addition and high-durability indicate that the ER(FePc/GO) is a promising electrocatalyst. Theoretical studies, indicating that the presence of Cl- and NO3 - ions lowered the conversion energy barrier, strongly supported the experimental results.

5.
RSC Adv ; 10(22): 13232-13236, 2020 Mar 30.
Article in English | MEDLINE | ID: mdl-35492108

ABSTRACT

We have synthesized solid-solution nanoparticles (Pd : Ru = 1 : 3, 1 : 1 and 3 : 1) in an immiscible Pd-Ru system by the pulsed plasma in liquid method using Pd-Ru mixture bulk electrodes. The particle sizes of the floated and sedimented samples were measured to be <10 and <20 nm, respectively, via high-resolution transmission electron microscopy (HR-TEM). The lattice parameters of nanoparticles followed the Vegard's law, and the energy-dispersive X-ray spectroscopy (EDX) results almost coincided with those obtained for the starting bulk mixtures. The solid-solution structures and local structure were confirmed via HR-TEM, X-ray photoelectron spectroscopy (XPS) and X-ray absorption fine structure spectroscopy (XAFS).

6.
Chem Commun (Camb) ; 55(31): 4586-4588, 2019 Apr 11.
Article in English | MEDLINE | ID: mdl-30931454

ABSTRACT

A 1.3 nm-thick nickel hydroxide (p-type, 0.5 nm)/titania (n-type, 0.8 nm) pn junction prepared by lamination of nanosheets improved the onset potential for photoelectrochemical oxidation and increased the photooxidation current, indicating that ultrathin pn junctions suppress the recombination of photo-generated carriers.

7.
Nanomaterials (Basel) ; 8(12)2018 Dec 18.
Article in English | MEDLINE | ID: mdl-30567370

ABSTRACT

We synthesized Pd-Fe series nanoparticles in solid solution using pulsed plasma in liquid with Pd-Fe bulk mixture electrodes. The Pd-Fe atomic percent ratios were 1:3, 1:1, and 3:1, and the particle size was measured to be less than 10 nm by high-resolution transmission electron microscopy (HR-TEM). The nanoparticles showed face-centered cubic structure. The lattice parameter increased with increasing Pd content and followed Vegard's law, and energy-dispersive X-ray spectra were consistent with the ratios of the starting samples, which showed a solid solution state. The solid solution structure and local structure were confirmed by HR-TEM and X-ray absorption fine structure.

8.
Angew Chem Int Ed Engl ; 57(29): 9073-9077, 2018 Jul 16.
Article in English | MEDLINE | ID: mdl-29766627

ABSTRACT

The hydrogen evolution reaction using semiconductor photocatalysts has been significantly improved by cocatalyst loading. However, there are still many speculations regarding the actual role of the cocatalyst. Now a photocatalytic hydrogen evolution reaction pathway is reported on a cocatalyst site using TiO2 nanosheets doped with Rh at Ti sites as one-atom cocatalysts. A hydride species adsorbed on the one-atom Rh dopant cocatalyst site was confirmed experimentally as the intermediate state for hydrogen evolution, which was consistent with the results of density functional theory (DFT) calculations. In this system, the role of the cocatalyst in photocatalytic hydrogen evolution is related to the withdrawal of photo-excited electrons and stabilization of the hydride intermediate species; the presence of oxygen vacancies induced by Rh facilitate the withdrawal of electrons and stabilization of the hydride.

9.
ACS Omega ; 3(2): 2074-2083, 2018 Feb 28.
Article in English | MEDLINE | ID: mdl-31458516

ABSTRACT

High dielectric constants (εr) were observed in two-dimensional composites obtained from stacking of reduced graphene oxide (RGO) with Ca2Nb3O10 and with TiO2 nanosheets. The relative dielectric permittivity values of the composites were found to be higher than 105, an amazingly high value compared to that of similar GO composites and other common dielectric materials. As a consequence, we considered application of the hybrids as super dielectric materials in high capacitance supercapacitors. The route to high capacitance involves the variation of oxygen vacancies within the surface and in the closest bulk interior of the hybrids. The effective charges generated throughout the metal oxide and carbon-oxygen polar bonding systems within the graphene skeleton appear to highly influence dielectric polarization. Moreover, the replenishment of oxygen vacancies at the RGO and metal oxide interface also contributes to polarizability.

10.
Soft Matter ; 13(45): 8353-8356, 2017 Nov 22.
Article in English | MEDLINE | ID: mdl-28948270

ABSTRACT

We successfully produced water-dispersible reduced graphene oxide (rGO) by pH tuning liquid-phase photoreduction. In this method, the stabilizers and chemical modification usually used for dispersing rGO are not required. The stable carboxyl groups continue to ionize throughout the photoreduction process under alkaline conditions and continue to provide water-dispersible rGO. Moreover, the decomposition of GO into CO2 is prevented, and the production of defects is largely avoided. This is because the epoxide groups on the GO nanosheets that lead to decomposition are converted into hydroxide groups under alkaline conditions. Thus, this simple aggregation-, defect-, and stabilizer-free method is potentially important for the future application of rGO.

11.
Sci Rep ; 7(1): 12159, 2017 09 22.
Article in English | MEDLINE | ID: mdl-28939840

ABSTRACT

Tuneable pressure effects associated with changing interlayer distances in two-dimensional graphene oxide (GO)/reduced GO (rGO) layers are demonstrated through monitoring the changes in the spin-crossover (SCO) temperature (T 1/2) of [Fe(Htrz)2(trz)](BF4) nanoparticles (NPs) incorporated in the interlayer spaces of the GO/rGO layers. The interlayer separation along the GO to GO/rGO-NP composites to rGO series decreases smoothly from 9.00 Å (for GO) to 3.50 Å (for rGO) as the temperature employed for the thermal reduction treatments of the GO-NP composites is increased. At the same time, T 1/2 increases from 351 K to 362 K along the series. This T 1/2 increment of 11 K corresponds to that observed for pristine [Fe(Htrz)2(trz)](BF4) NPs under a hydrostatic pressure of 38 MPa. The influence of the stacked layer structures on the pseudo-pressure effects has been further probed by investigating the differences in T 1/2 for [Fe(Htrz)2(trz)](BF4) that is present in the composite as larger bulk particles rather than as NPs.

12.
ACS Appl Mater Interfaces ; 9(31): 26151-26160, 2017 Aug 09.
Article in English | MEDLINE | ID: mdl-28715632

ABSTRACT

The rapid development of flexible and wearable electronics has led to an increase in the demand for flexible supercapacitors with enhanced electrochemical performance. Graphene oxide (GO) and reduced GO (rGO) exhibit several key properties required for supercapacitor components. Although solid-state rGO/GO/rGO supercapacitors with unique structures are promising, their moderate capacitance is inadequate for practical applications. Herein, we report a flexible solid-state rGO/GO/rGO supercapacitor comprising H2SO4-intercalated GO electrolyte/separator and pseudocapacitive rGO electrodes, which demonstrate excellent electrochemical performance. The resulting supercapacitor delivered an areal capacitance of 14.5 mF cm-2, which is among the highest values achieved for any rGO/GO/rGO supercapacitor. High ionic concentration and fast ion conduction in the H2SO4-intercalated GO electrolyte/separator and abundant CH defects, which serve as pseudocapacitive sites on the rGO electrode, were responsible for the high capacitance of this device. The rGO electrode, well separated by the H2SO4 molecular spacer, supplied highly efficient ion transport channels, leading to excellent rate capability. The highly packed rGO electrode and high specific capacitance resulted in a high volumetric energy density (1.24 mWh cm-3) observed in this supercapacitor. The structure, without a clear interface between GO and rGO, provides extremely low resistance and flexibility for devices. Our device operated in air (25 °C 40%) without the use of external electrolytes, conductive additives, and binders. Furthermore, we demonstrate a simple and versatile technique for supercapacitor fabrication by combining photoreduction and electrochemical treatment. These advantages are attractive for developing novel carbon-based energy devices with high device performance and low fabrication costs.

13.
Chem Asian J ; 12(2): 194-197, 2017 Jan 17.
Article in English | MEDLINE | ID: mdl-27885828

ABSTRACT

Insertion of 3-hydroxypropanesulfonicacid (HPS) in the graphene oxide (GO) interlayer results in high proton conductivity (10-2 -10-1  S cm-1 ), owing to an improvement in oxygen content, interlayer distance and water absorbing capacity. This result indicates that hydroxyalkylsulfonicacids can be perfect guest molecules for improving the proton conductivity of carbon materials.

14.
Chem Asian J ; 11(16): 2322-7, 2016 Aug 19.
Article in English | MEDLINE | ID: mdl-27411089

ABSTRACT

A highly stable proton conductor has been developed from carbon sphere oxide (CSO). Carbon sphere (CS) generated from sucrose was oxidized successfully to CSO using Hummers' graphite oxidation technique. At room temperature and 90 % relative humidity, the proton conductivity of thin layer CSO on microsized comb electrode was found to be 8.7×10(-3)  S cm(-1) , which is higher than that for a similar graphene oxide (GO) sample (3.4×10(-3)  S cm(-1) ). The activation energy (Ea ) of 0.258 eV suggests that the proton is conducted through the Grotthuss mechanism. The carboxyl functional groups on the CSO surface are primarily responsible for transporting protons. In contrast to conventional carbon-based proton conductors, in which the functional groups decompose around 80 °C, CSO has a stable morphology and functional groups with reproducible proton conductivity up to 400 °C. Even once annealed at different temperatures at high relative humidity, the proton conductivity of CSO remains almost unchanged, whereas significant change is seen with a similar GO sample. After annealing at 100 and 200 °C, the respective proton conductivity of CSO was almost the same, and was about ∼50 % of the proton conductivity at room temperature. Carbon-based solid electrolyte with such high thermal stability and reproducible proton conductivity is desired for practical applications. We expect that a CSO-based proton conductor would be applicable for fuel cells and sensing devices operating under high temperatures.

15.
Anal Chem ; 88(12): 6110-4, 2016 06 21.
Article in English | MEDLINE | ID: mdl-27264720

ABSTRACT

X-ray photoelectron spectroscopy (XPS) is among the most powerful techniques to analyze defective structures of carbon materials such as graphene and activated carbon. However, reported assignments of defects, especially sp(3)C and sp(2)C, are questionable. Most reports assign sp(3)C peaks to be higher than sp(2)C peaks, whereas a few reports assign sp(3)C peaks to be lower than sp(2)C peaks. Our group previously reported that calculated binding energies of sp(3)C were basically lower than those of sp(2)C. This work clarified that one of the reasons for the prevailing ambiguous assignments of sp(3)C peaks is charging effects of diamond.

16.
Chem Commun (Camb) ; 52(20): 3919-22, 2016 Mar 11.
Article in English | MEDLINE | ID: mdl-26871961

ABSTRACT

We propose a new type of all-graphene oxide device. Reduced graphene oxide (rGO)/graphene oxide (GO)/rGO functions as both a supercapacitor and a battery, depending on the working voltage. The rGO/GO/rGO operates as a supercapacitor until 1.2 V. At greater than 1.5 V, it behaves as a battery using redox reaction.

17.
ACS Appl Mater Interfaces ; 7(41): 23041-6, 2015 Oct 21.
Article in English | MEDLINE | ID: mdl-26452091

ABSTRACT

Inexpensive solid proton conducting materials with high proton conductivity and thermal stability are necessary for practical solid state electrochemical devices. Here we report that coal oxide (CO) is a promising carbon-based proton conductor with remarkable thermal robustness. The CO produced by simple liquid-phase oxidation of coal demonstrates excellent dispersibility in water owing to the surface carboxyl groups. The proton conductivity of CO, 3.9 × 10(-3) S cm(-1) at 90% relative humidity, is as high as that of graphene oxide (GO). Remarkably, CO exhibits much higher thermal stability than GO, with CO retaining the excellent proton conductivity as well as the capacitance performance even after thermal annealing at 200 °C. Our study demonstrates that the chemical modification of the abundant coal provides proton conductors that can be used in practical applications for a wide range of energy devices.

18.
Chem Commun (Camb) ; 50(93): 14527-30, 2014 Dec 04.
Article in English | MEDLINE | ID: mdl-25302574

ABSTRACT

Graphene oxide (GO) walled channels filled by sulfate ions exhibit an optimized proton conductivity, which is higher than the proton conductivity of all other forms of GO. The sulphate ion increases the water absorbing capacity and hydrogen bond reformation process in GO.

19.
Inorg Chem ; 53(17): 9151-5, 2014 Sep 02.
Article in English | MEDLINE | ID: mdl-25122035

ABSTRACT

Tuning upconversion (UPC) luminescence using external stimuli and fields, as well as chemical reactions, is expected to lead to novel and efficient optical sensors. Herein, highly tunable UPC luminescence was achieved through a host-guest chemistry approach. Specifically, interlayer ion exchange reactions reversibly tuned the emission intensity and green-red color of Er/Yb-codoped A2La2Ti3O10 layered perovskite, where A corresponds to proton and alkali metal ions, enabling the visualization of host-guest interactions and reactions.

20.
J Hazard Mater ; 278: 426-32, 2014 Aug 15.
Article in English | MEDLINE | ID: mdl-24997258

ABSTRACT

Rapid decomposition of wastewater contaminants using sulfurized limonite (S-limonite) was investigated. Limonite is used for desulfurization of biogases, and S-limonite is obtained from desulfurization plants as solid waste. In this work, the profitable use of S-limonite in water treatment was examined. The divalent Fe in S-limonite was expected to produce OH radicals, as Fe(2+) ions and limonite thermally treated with H2 do. Methylene blue was used for batch-wise monitoring of the decomposition performance. The decomposition rate was fast and the methylene blue solution color disappeared in only 10s when a small amount of H2O2 was added (1mM in the sample solution) in the presence of S-limonite. The OH radicals were formed by a heterogeneous reaction on the S-limonite surface and Fenton reaction with dissolved Fe(2+). The decomposition of pentachlorophenol was also examined; it was successfully decomposed in batch-wise tests. The surfaces of limonite before sulfurization, S-limonite, and S-limonite after use for water treatment were performed using scanning electron microscopy and X-ray photoelectron spectroscopy. The results show that S-limonite reverted to limonite after being used for water treatment.


Subject(s)
Ferric Compounds/chemistry , Hydrogen Peroxide/chemistry , Methylene Blue/chemistry , Sulfur/chemistry , Water Pollutants, Chemical/chemistry , Coloring Agents/chemistry , Hydrogen Sulfide/chemistry , Hydrogen-Ion Concentration , Pentachlorophenol/chemistry , Waste Disposal, Fluid/methods
SELECTION OF CITATIONS
SEARCH DETAIL