Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 25
Filter
Add more filters










Publication year range
1.
iScience ; 27(3): 109099, 2024 Mar 15.
Article in English | MEDLINE | ID: mdl-38414854

ABSTRACT

Fear memories enhance survival especially when the memories guide defensive movements to minimize harm. Accordingly, fear memories and body movements have tight relationships in animals: Fear memory acquisition results in adapting reactive defense movements, while training active defense movements reduces fear memory. However, evidence in humans is scarce because their movements are typically suppressed in experiments. Here, we tracked adult participants' body motions while they underwent ecologically valid fear conditioning in a 3D virtual space. First, with body motion tracking, we revealed that distinct spatiotemporal body movement patterns emerge through fear conditioning. Second, subsequent training to actively avoid threats with naturalistic defensive actions led to a long-term (24 h) reduction of physiological and embodied conditioned responses, while extinction or vicarious training only transiently reduced the responses. Together, our results highlight the role of body movements in human fear memory and its intervention.

2.
Front Psychol ; 13: 942859, 2022.
Article in English | MEDLINE | ID: mdl-36176801

ABSTRACT

Many studies have reported neural correlates of visual awareness across several brain regions, including the sensory, parietal, and frontal areas. In most of these studies, participants were instructed to explicitly report their perceptual experience through a button press or verbal report. It is conceivable, however, that explicit reporting itself may trigger specific neural responses that can confound the direct examination of the neural correlates of visual awareness. This suggests the need to assess visual awareness without explicit reporting. One way to achieve this is to develop a technique to predict the visual awareness of participants based on their peripheral responses. Here, we used eye movements and pupil sizes to decode trial-by-trial changes in the awareness of a stimulus whose visibility was deteriorated due to adaptation-induced blindness (AIB). In the experiment, participants judged whether they perceived a target stimulus and rated the confidence they had in their perceptual judgment, while their eye movements and pupil sizes were recorded. We found that not only perceptual decision but also perceptual confidence can be separately decoded from the eye movement and pupil size. We discuss the potential of this technique with regard to assessing visual awareness in future neuroimaging experiments.

3.
Sci Data ; 8(1): 65, 2021 02 23.
Article in English | MEDLINE | ID: mdl-33623035

ABSTRACT

Decoded neurofeedback (DecNef) is a form of closed-loop functional magnetic resonance imaging (fMRI) combined with machine learning approaches, which holds some promises for clinical applications. Yet, currently only a few research groups have had the opportunity to run such experiments; furthermore, there is no existing public dataset for scientists to analyse and investigate some of the factors enabling the manipulation of brain dynamics. We release here the data from published DecNef studies, consisting of 5 separate fMRI datasets, each with multiple sessions recorded per participant. For each participant the data consists of a session that was used in the main experiment to train the machine learning decoder, and several (from 3 to 10) closed-loop fMRI neural reinforcement sessions. The large dataset, currently comprising more than 60 participants, will be useful to the fMRI community at large and to researchers trying to understand the mechanisms underlying non-invasive modulation of brain dynamics. Finally, the data collection size will increase over time as data from newly run DecNef studies will be added.


Subject(s)
Brain/diagnostic imaging , Machine Learning , Magnetic Resonance Imaging , Neurofeedback , Adult , Datasets as Topic , Female , Humans , Male , Young Adult
4.
J Chem Phys ; 154(8): 080901, 2021 Feb 28.
Article in English | MEDLINE | ID: mdl-33639756

ABSTRACT

Transport of ions through liquid-liquid interfaces is of fundamental importance to a wide variety of applications. However, since it is quite challenging for experimentalists to directly and selectively observe molecules at the interfaces, microscopic mechanisms of ion transport have been largely presumed from kinetic information. This Perspective illustrates recent examples that molecular dynamics simulations with proper free energy surfaces clarified mechanistic pictures of ion transport. The key is a proper choice of coordinates and defining/calculating free energy surfaces in multidimensional space. Once the free energy surfaces for realistic systems are available, they naturally provide new insight into the ion transport in unprecedented details, including water finger, transient ion pairing, and electron transfer.

5.
Mol Psychiatry ; 26(9): 5023-5039, 2021 09.
Article in English | MEDLINE | ID: mdl-32684635

ABSTRACT

Patients with posttraumatic stress disorder (PTSD) appear to manifest two opposing tendencies in their attentional biases and symptoms. However, whether common neural mechanisms account for their opposing attentional biases and symptoms remains unknown. We here propose a model in which reciprocal inhibition between the amygdala and ventromedial prefrontal cortex (vmPFC) predicts synchronized alternations between emotional under- and overmodulatory states at the neural, behavioral, and symptom levels within the same patients. This reciprocal inhibition model predicts that when the amygdala is dominant, patients enter an emotional undermodulatory state where they show attentional bias toward threat and manifest re-experiencing symptoms. In contrast, when the vmPFC is dominant, patients are predicted to enter an emotional overmodulatory state where they show attentional bias away from threat and avoidance symptoms. To test the model, we performed a behavioral meta-analysis (total N = 491), analyses of own behavioral study (N = 20), and a neuroimaging meta-analysis (total N = 316). Supporting the model, we found the distributions of behavioral attentional measurements to be bimodal, suggesting alternations between the states within patients. Moreover, attentional bias toward threat was related to re-experiencing symptoms, whereas attentional bias away from threat was related with avoidance symptoms. We also found that the increase and decrease of activity in the left amygdala activity was related with re-experiencing and avoidance symptoms, respectively. Our model may help elucidate the neural mechanisms differentiating nondissociative and dissociative subtypes of PTSD, which usually show differential emotional modulatory levels. It may thus provide a new venue for therapies targeting each subtype.


Subject(s)
Stress Disorders, Post-Traumatic , Amygdala , Emotions , Humans , Magnetic Resonance Imaging , Neuroimaging , Prefrontal Cortex
6.
Front Neurosci ; 14: 638, 2020.
Article in English | MEDLINE | ID: mdl-32733185

ABSTRACT

[This corrects the article DOI: 10.3389/fnins.2020.00255.].

7.
Neuroimage Clin ; 27: 102296, 2020.
Article in English | MEDLINE | ID: mdl-32599551

ABSTRACT

Although altered early stages of visual processing have been reported among schizophrenia patients, how such atypical visual processing may affect higher-level cognition remains largely unknown. Here we tested the hypothesis that metacognitive performance may be atypically modulated by spatial frequency (SF) of visual stimuli among individuals with schizophrenia, given their altered magnocellular function. To study the effect of SF on metacognitive performance, we asked patients and controls to perform a visual detection task on gratings with different SFs and report confidence, and analyzed the data using the signal detection theoretic measure meta-d'. Control subjects showed better metacognitive performance after yes- (stimulus presence) than after no- (stimulus absence) responses ('yes-response advantage') for high SF (HSF) stimuli but not for low SF (LSF) stimuli. The patients, to the contrary, showed a 'yes-response advantage' not only for HSF but also for LSF stimuli, indicating atypical SF dependency of metacognition. An fMRI experiment using the same task revealed that the dorsolateral prefrontal cortex (DLPFC), known to be crucial for metacognition, shows activity mirroring the behavioral results: decoding accuracy of perceptual confidence in DLPFC was significantly higher for HSF than for LSF stimuli in controls, whereas this decoding accuracy was independent of SF in patients. Additionally, the functional connectivity of DLPFC with parietal and visual areas was modulated by SF and response type (yes/no) in a different manner between controls and patients. While individuals without schizophrenia may flexibly adapt metacognitive computations across SF ranges, patients may employ a different mechanism that is independent of SF. Because visual stimuli of low SF have been linked to predictive top-down processing, this may reflect atypical functioning in these processes in schizophrenia.


Subject(s)
Cognition/physiology , Metacognition/physiology , Schizophrenia/physiopathology , Visual Perception/physiology , Adult , Facial Expression , Female , Humans , Magnetic Resonance Imaging/methods , Male , Middle Aged , Photic Stimulation/methods , Prefrontal Cortex/physiopathology
8.
Front Neurosci ; 14: 255, 2020.
Article in English | MEDLINE | ID: mdl-32425741

ABSTRACT

Olfaction is an evolutionary ancient sense, but it remains unclear to what extent it can influence routine human behavior. We examined whether a threat-relevant predator odor (2-methyl-2-thiazoline) would contextually enhance the formation of human fear memory associations. Participants who learned to associate visual stimuli with electric shock in this predator odor context later showed stronger fear responses to the visual stimuli than participants who learned in an aversiveness-matched control odor context. This effect generalized to testing in another odor context, even after extinction training. Results of a separate experiment indicate that a possible biological mechanism for this effect may be increased cortisol levels in a predator odor context. These results suggest that innate olfactory processes can play an important role in human fear learning. Modulatory influences of odor contexts may partly explain the sometimes maladaptive persistence of human fear memory, e.g., in post-traumatic stress disorders.

9.
J Phys Chem Lett ; 11(4): 1584-1588, 2020 Feb 20.
Article in English | MEDLINE | ID: mdl-32020807

ABSTRACT

Hard, hydrophilic ions that hardly transport over the water-oil interface by imposing external electric potential could undergo facile transport with a trace of ligand. Such phenomena, called "shuttling", are elucidated by microscopic investigation with molecular dynamics simulations. The catalytic role manifests itself in a 2-D free-energy surface within the nanometer range of the interface. The free-energy landscape clearly distinguishes the condition that the catalytic shuttling plays a vital role in the ion transport. The mechanism associated with transient complex formation at the interface is shown to be widely relevant to the ion kinetics and extends the conventional concept of facilitated ion transport.

10.
eNeuro ; 6(6)2019.
Article in English | MEDLINE | ID: mdl-31694815

ABSTRACT

The perceptual system gives priority to threat-relevant signals with survival value. In addition to the processing initiated by sensory inputs of threat signals, prioritization of threat signals may also include processes related to threat anticipation. These neural mechanisms remain largely unknown. Using ultra-high-field 7 tesla (7T) fMRI, we show that anticipatory processing takes place in the early stages of visual processing, specifically in the pulvinar and V1. When anticipation of a threat-relevant fearful face target triggered false perception of not-presented target, there was enhanced activity in the pulvinar as well as in the V1 superficial-cortical-depth (layers 1-3). The anticipatory activity was absent in the LGN or higher visual cortical areas (V2-V4). The effect in V1 was specific to the perception of fearful face targets and did not generalize to happy face targets. A preliminary analysis showed that the connectivity between the pulvinar and V1 superficial-cortical-depth was enhanced during false perception of threat, indicating that the pulvinar and V1 may interact in preparation of anticipated threat. The anticipatory processing supported by the pulvinar and V1 may play an important role in non-sensory-input-driven anxiety states.


Subject(s)
Anticipation, Psychological/physiology , Pulvinar/diagnostic imaging , Visual Cortex/diagnostic imaging , Adult , Brain Mapping , Female , Functional Neuroimaging , Humans , Magnetic Resonance Imaging , Male , Photic Stimulation , Young Adult
11.
Front Hum Neurosci ; 13: 233, 2019.
Article in English | MEDLINE | ID: mdl-31379538

ABSTRACT

Background: Post-traumatic stress disorder (PTSD) is a neuropsychiatric affective disorder that can develop after traumatic life-events. Exposure-based therapy is currently one of the most effective treatments for PTSD. However, exposure to traumatic stimuli is so aversive that a significant number of patients drop-out of therapy during the course of treatment. Among various attempts to develop novel therapies that bypass such aversiveness, neurofeedback appears promising. With neurofeedback, patients can unconsciously self-regulate brain activity via real-time monitoring and feedback of the EEG or fMRI signals. With conventional neurofeedback methods, however, it is difficult to induce neural representation related to specific trauma because the feedback is based on the neural signals averaged within specific brain areas. To overcome this difficulty, novel neurofeedback approaches such as Decoded Neurofeedback (DecNef) might prove helpful. Instead of the average BOLD signals, DecNef allows patients to implicitly regulate multivariate voxel patterns of the BOLD signals related with feared stimuli. As such, DecNef effects are postulated to derive either from exposure or counter-conditioning, or some combination of both. Although the exact mechanism is not yet fully understood. DecNef has been successfully applied to reduce fear responses induced either by fear-conditioned or phobic stimuli among non-clinical participants. Methods: Follows the Preferred Reporting Items for Systematic Reviews and Meta-Analyses (PRISMA) guidelines, a systematic review was conducted to compare DecNef effect with those of conventional EEG/fMRI-based neurofeedback on PTSD amelioration. To elucidate the possible mechanisms of DecNef on fear reduction, we mathematically modeled the effects of exposure-based and counter conditioning separately and applied it to the data obtained from past DecNef studies. Finally, we conducted DecNef on four PTSD patients. Here, we review recent advances in application of neurofeedback to PTSD treatments, including the DecNef. This review is intended to be informative for neuroscientists in general as well as practitioners planning to use neurofeedback as a therapeutic strategy for PTSD. Results: Our mathematical model suggested that exposure is the key component for DecNef effects in the past studies. Following DecNef a significant reduction of PTSD severity was observed. This effect was comparable to those reported for conventional neurofeedback approach. Conclusions: Although a much larger number of participants will be needed in future, DecNef could be a promising therapy that bypasses the unpleasantness of conscious exposure associated with conventional therapies for fear related disorders, including PTSD.

12.
Conscious Cogn ; 59: 104-111, 2018 03.
Article in English | MEDLINE | ID: mdl-29366542

ABSTRACT

Volitional control has been related to the excitatory/inhibitory (E/I) ratio of glutamate-glutamine to γ-aminobutyric acid concentration in the different parts of the frontal cortex. Yet, how the neurochemical balance in each of the brain areas modulates volitional control remains unclear. Here, participants performed an auditory Go/No-Go task with and without task-irrelevant face distractors. Neurochemical balance was measured with magnetic resonance spectroscopy at rest. Participants with higher E/I ratios in the dorsolateral prefrontal cortex (DLPFC) showed less control over No-Go cues under no distraction, whereas participants with higher E/I ratios in the anterior cingulate cortex (ACC) were more prompted to make speeded Go responses under distraction. Therefore, the neurochemical balance in the DLPFC and ACC may be involved in the control over task-relevant and -irrelevant cues respectively.


Subject(s)
Executive Function/physiology , Glutamic Acid/metabolism , Glutamine/metabolism , Gyrus Cinguli/metabolism , Inhibition, Psychological , Prefrontal Cortex/metabolism , Psychomotor Performance/physiology , Volition/physiology , gamma-Aminobutyric Acid/metabolism , Adult , Female , Humans , Magnetic Resonance Spectroscopy , Male , Middle Aged , Young Adult
13.
Brain Nerve ; 69(12): 1427-1432, 2017 Dec.
Article in Japanese | MEDLINE | ID: mdl-29282346

ABSTRACT

Humans often assess their confidence in their own perception, e.g., feeling "confident" or "certain" of having seen a friend, or feeling "uncertain" about whether the phone rang. The neural mechanism underlying the metacognitive function that reflects subjective perception still remains under debate. We have previously used decoded neurofeedback (DecNef) to demonstrate that manipulating the multivoxel activation patterns in the frontoparietal network modulates perceptual confidence without affecting perceptual performance. The results provided clear evidence for a dissociation between perceptual confidence and performance and suggested a distinct role of the frontoparietal network in metacognition.


Subject(s)
Metacognition , Neurofeedback , Brain/physiology , Humans , Metacognition/physiology , Perception
14.
Neuroimage ; 149: 323-337, 2017 04 01.
Article in English | MEDLINE | ID: mdl-28163140

ABSTRACT

Neurofeedback studies using real-time functional magnetic resonance imaging (rt-fMRI) have recently incorporated the multi-voxel pattern decoding approach, allowing for fMRI to serve as a tool to manipulate fine-grained neural activity embedded in voxel patterns. Because of its tremendous potential for clinical applications, certain questions regarding decoded neurofeedback (DecNef) must be addressed. Specifically, can the same participants learn to induce neural patterns in opposite directions in different sessions? If so, how does previous learning affect subsequent induction effectiveness? These questions are critical because neurofeedback effects can last for months, but the short- to mid-term dynamics of such effects are unknown. Here we employed a within-subjects design, where participants underwent two DecNef training sessions to induce behavioural changes of opposing directionality (up or down regulation of perceptual confidence in a visual discrimination task), with the order of training counterbalanced across participants. Behavioral results indicated that the manipulation was strongly influenced by the order and the directionality of neurofeedback training. We applied nonlinear mathematical modeling to parametrize four main consequences of DecNef: main effect of change in confidence, strength of down-regulation of confidence relative to up-regulation, maintenance of learning effects, and anterograde learning interference. Modeling results revealed that DecNef successfully induced bidirectional confidence changes in different sessions within single participants. Furthermore, the effect of up- compared to down-regulation was more prominent, and confidence changes (regardless of the direction) were largely preserved even after a week-long interval. Lastly, the effect of the second session was markedly diminished as compared to the effect of the first session, indicating strong anterograde learning interference. These results are interpreted in the framework of reinforcement learning and provide important implications for its application to basic neuroscience, to occupational and sports training, and to therapy.


Subject(s)
Magnetic Resonance Imaging/methods , Models, Neurological , Models, Theoretical , Neurofeedback/methods , Reinforcement, Psychology , Algorithms , Brain Mapping/methods , Female , Humans , Image Processing, Computer-Assisted , Male , Young Adult
15.
Nat Commun ; 7: 13669, 2016 12 15.
Article in English | MEDLINE | ID: mdl-27976739

ABSTRACT

A central controversy in metacognition studies concerns whether subjective confidence directly reflects the reliability of perceptual or cognitive processes, as suggested by normative models based on the assumption that neural computations are generally optimal. This view enjoys popularity in the computational and animal literatures, but it has also been suggested that confidence may depend on a late-stage estimation dissociable from perceptual processes. Yet, at least in humans, experimental tools have lacked the power to resolve these issues convincingly. Here, we overcome this difficulty by using the recently developed method of decoded neurofeedback (DecNef) to systematically manipulate multivoxel correlates of confidence in a frontoparietal network. Here we report that bi-directional changes in confidence do not affect perceptual accuracy. Further psychophysical analyses rule out accounts based on simple shifts in reporting strategy. Our results provide clear neuroscientific evidence for the systematic dissociation between confidence and perceptual performance, and thereby challenge current theoretical thinking.


Subject(s)
Frontal Lobe/diagnostic imaging , Neurofeedback , Parietal Lobe/diagnostic imaging , Visual Perception/physiology , Adult , Female , Frontal Lobe/physiology , Functional Neuroimaging , Humans , Image Processing, Computer-Assisted , Magnetic Resonance Imaging , Male , Parietal Lobe/physiology , Young Adult
16.
Soc Cogn Affect Neurosci ; 11(11): 1772-1782, 2016 11.
Article in English | MEDLINE | ID: mdl-27405614

ABSTRACT

Fearful faces are believed to be prioritized in visual perception. However, it is unclear whether the processing of low-level facial features alone can facilitate such prioritization or whether higher-level mechanisms also contribute. We examined potential biases for fearful face perception at the levels of perceptual decision-making and perceptual confidence. We controlled for lower-level visual processing capacity by titrating luminance contrasts of backward masks, and the emotional intensity of fearful, angry and happy faces. Under these conditions, participants showed liberal biases in perceiving a fearful face, in both detection and discrimination tasks. This effect was stronger among individuals with reduced density in dorsolateral prefrontal cortex, a region linked to perceptual decision-making. Moreover, participants reported higher confidence when they accurately perceived a fearful face, suggesting that fearful faces may have privileged access to consciousness. Together, the results suggest that mechanisms in the prefrontal cortex contribute to making fearful face perception special.


Subject(s)
Awareness/physiology , Decision Making/physiology , Facial Expression , Facial Recognition/physiology , Fear/physiology , Prefrontal Cortex/physiology , Adult , Arousal/physiology , Attention/physiology , Discrimination, Psychological/physiology , Female , Humans , Magnetic Resonance Imaging , Male , Metacognition/physiology , Perceptual Masking/physiology , Young Adult
18.
Psychol Sci ; 26(11): 1664-80, 2015 Nov.
Article in English | MEDLINE | ID: mdl-26408037

ABSTRACT

People live in a continuous environment in which the visual scene changes on a slow timescale. It has been shown that to exploit such environmental stability, the brain creates a continuity field in which objects seen seconds ago influence the perception of current objects. What is unknown is whether a similar mechanism exists at the level of metacognitive representations. In three experiments, we demonstrated a robust intertask confidence leak-that is, confidence in one's response on a given task or trial influencing confidence on the following task or trial. This confidence leak could not be explained by response priming or attentional fluctuations. Better ability to modulate confidence leak predicted higher capacity for metacognition as well as greater gray matter volume in the prefrontal cortex. A model based on normative principles from Bayesian inference explained the results by postulating that observers subjectively estimate the perceptual signal strength in a stable environment. These results point to the existence of a novel metacognitive mechanism mediated by regions in the prefrontal cortex.


Subject(s)
Attention , Decision Making , Prefrontal Cortex/physiology , Visual Perception , Adolescent , Adult , Bayes Theorem , Emotions , Female , Humans , Male , Regression Analysis , Young Adult
19.
Atten Percept Psychophys ; 77(4): 1295-306, 2015 May.
Article in English | MEDLINE | ID: mdl-25737256

ABSTRACT

Our visual perception is typically accompanied by a sense of subjective confidence. Since perceptual confidence is related to prefrontal activity, higher perceptual confidence may enhance cognitive control functions. To examine this interaction, we developed a novel method to selectively manipulate perceptual confidence while keeping stimulus discrimination accuracy constant. In a behavioral experiment, grating stimuli with different orientations were presented as go/no-go signals. Surprisingly, the results showed that confidence in visual discrimination of the signals on its own did not facilitate response inhibition, since when participants were presented with stimuli that yielded higher confidence, they were no better at performing a go/no-go task. These results were replicated with different (dot motion) stimuli, ruling out alternative explanations based on stimulus idiosyncrasy. In a different experiment, when the grating stimuli were presented as cues for task set preparation, we found that higher perceptual confidence also did not enhance task set preparation efficiency. This result was again replicated with dot motion stimuli. Since confidence may relate to perceptual awareness (Peirce & Jastrow, 1885), our findings may put current dominant theories in question, since these theories often suppose the critical involvement of consciousness in cognitive control. As a proof of concept, our method may also provide a new and powerful way to examine other functions of consciousness in future studies.


Subject(s)
Cognition , Discrimination, Psychological , Visual Perception , Adult , Cues , Female , Humans , Male , Photic Stimulation , Young Adult
20.
Cogn Neurosci ; 6(1): 24-30, 2015.
Article in English | MEDLINE | ID: mdl-25483026

ABSTRACT

The association between thermal and emotional experiences in interpersonal relations is intuitively apparent and has been confirmed by previous studies. However, research has not yet elucidated whether such an association is grounded in mental processes occurring at an intrapersonal (internal) level. In two experiments we examined whether the thermal-emotional associations can be observed at an intrapersonal level. We looked at the speed and accuracy of stimuli categorization. Experiment 1 examined the implicit semantic association between temperature (warm versus cold) and emotional valence (positive versus negative). Experiment 2 examined the association between experience of physical temperature and emotional valence. In both experiments warm-positive/cold-negative associations were demonstrated. These results suggest a conceptual and perceptual mapping in the mental representation of emotion and temperature, which occurs at an intrapersonal level, and which might serve as the ground to the interpersonal thermal-emotional interactions.


Subject(s)
Emotions/physiology , Semantics , Temperature , Adult , Female , Humans , Male , Photic Stimulation/methods , Physical Stimulation , Reaction Time/physiology , Young Adult
SELECTION OF CITATIONS
SEARCH DETAIL
...