Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Language
Publication year range
1.
Article in English | WPRIM (Western Pacific) | ID: wpr-998037

ABSTRACT

@#Paint contains various complex chemical mixtures, such as aliphatic hydrocarbons, aromatic hydrocarbons (primarily toluene), ketones, and benzene as reported at previous studies. Toxicity from some chemicals can cause early DNA damage with various factors. A scoping review was conducted via literature review on relevant studies on the effect of paint exposure on paint workers and DNA damage. A systematic search was conducted in October 2021 via PubMed, Scopus, and Web of Science databases. The key terms used were paint, solvent-based paint, organic solvent, mixed organic solvent, occupational exposure and DNA damage, oxidative stress, genotoxicity on a painter, paint worker. From 561 articles, only 13 articles were finally selected based on the inclusion, exclusion criteria, and eligibility criteria. The literature showed that biomonitoring studies on painters were consistently reporting positive and significant DNA damage due to exposure to different types of compounds mixed in a paint. However, there were fewer studies on paint manufacturing factory workers compared to painters while paint manufacturing workers exposed various chemical everyday during the paint production which potentially susceptible to occupational toxicity. In conclusion, this review suggests that exposure to paints could induce early DNA damage among paint workers and further investigations on paint exposure among paint manufacturing factory workers and the DNA damage were needed in order to improve occupational health among paint workers in the future.

2.
Bioorg Med Chem ; 49: 116442, 2021 11 01.
Article in English | MEDLINE | ID: mdl-34600241

ABSTRACT

Acquired paclitaxel (PTX) chemoresistance in triple-negative breast cancer (TNBC) can be inferred from the overexpression of toll-like receptor 4 (TLR4) and myeloid differentiation primary response 88 (MyD88) proteins and the activation of the TLR4/MyD88 cascading signalling pathway. Finding a new inhibitor that can attenuate the activation of this pathway is a novel strategy for reducing PTX chemoresistance. In this study, a series of small molecule compounds were synthesised and tested in combination with PTX against TNBC cells. The trimethoxy-substituted compound significantly decreased MyD88 overexpression and improved PTX activity in MDA-MB-231TLR4+ cells but not in HCCTLR4- cells. On the contrary, the trifluoromethyl-substituted compound with PTX synergistically improved the growth inhibition in both TNBC subtypes. The fluorescence titrations indicated that both compounds could bind with MD2 with good and comparable binding affinities. This was further supported by docking analysis, in which both compounds fit perfectly well and form some critical binding interactions with MD2, an essential lipid-binding accessory to TLR4 involved in activating the TLR-4/MyD88-dependent pathway.


Subject(s)
Antineoplastic Agents, Phytogenic/pharmacology , Myeloid Differentiation Factor 88/antagonists & inhibitors , Paclitaxel/pharmacology , Small Molecule Libraries/pharmacology , Triple Negative Breast Neoplasms/drug therapy , Antineoplastic Agents, Phytogenic/chemical synthesis , Antineoplastic Agents, Phytogenic/chemistry , Cell Line, Tumor , Cell Proliferation/drug effects , Dose-Response Relationship, Drug , Drug Screening Assays, Antitumor , Humans , Molecular Structure , Myeloid Differentiation Factor 88/genetics , Paclitaxel/chemical synthesis , Paclitaxel/chemistry , Small Molecule Libraries/chemical synthesis , Small Molecule Libraries/chemistry , Structure-Activity Relationship , Toll-Like Receptor 4/antagonists & inhibitors , Toll-Like Receptor 4/genetics , Triple Negative Breast Neoplasms/metabolism , Triple Negative Breast Neoplasms/pathology
SELECTION OF CITATIONS
SEARCH DETAIL
...