Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 9 de 9
Filter
Add more filters










Database
Language
Publication year range
1.
Front Plant Sci ; 15: 1370956, 2024.
Article in English | MEDLINE | ID: mdl-38817942

ABSTRACT

The study challenges the conventional understanding of awn loss as a domestication syndrome, showing instead that many awned varieties continued to be widely grown in Japan until the early twentieth century and that selection for awn reduction was active at that time, demonstrating that awn loss is not a domestication syndrome but "a trait that emerged during crop improvement". Although selection for awnless mutants was carried out independently using different types of awned cultivars in the early twentieth century in Japan, awn loss was caused by the mutation in OsEPFL1. This suggests that a single mutant haplotype of OsEPFL1 was conserved in the genomes of different cultivars and subsequently selected within each line to meet the demand for awnless varieties. The study also conducts phylogenetic analyses of EPFL1 in 48 grass plants, revealing its unique involvement in awn formation in rice while potentially playing a different role in the domestication of other grass plants. Finally, an attempt is made to isolate an awn-forming gene that has not been identified from the awned rice cultivar "Omachi", which is still cultivated in Japan. The results presented in this paper provide a new perspective on domestication against the conventional understanding of awn development, shedding light on its potential as a useful organ for breeding to mitigate environmental stress.

2.
Front Plant Sci ; 15: 1366413, 2024.
Article in English | MEDLINE | ID: mdl-38638359

ABSTRACT

In the early 1900s, mutation breeding to select varieties with desirable traits using spontaneous mutation was actively conducted around the world, including Japan. In rice, the number of fixed mutations per generation was estimated to be 1.38-2.25. Although this low mutation rate was a major problem for breeding in those days, in the modern era with the development of next-generation sequencing (NGS) technology, it was conversely considered to be an advantage for efficient gene identification. In this paper, we proposed an in silico approach using NGS to compare the whole genome sequence of a spontaneous mutant with that of a closely related strain with a nearly identical genome, to find polymorphisms that differ between them, and to identify the causal gene by predicting the functional variation of the gene caused by the polymorphism. Using this approach, we found four causal genes for the dwarf mutation, the round shape grain mutation and the awnless mutation. Three of these genes were the same as those previously reported, but one was a novel gene involved in awn formation. The novel gene was isolated from Bozu-Aikoku, a mutant of Aikoku with the awnless trait, in which nine polymorphisms were predicted to alter gene function by their whole-genome comparison. Based on the information on gene function and tissue-specific expression patterns of these candidate genes, Os03g0115700/LOC_Os03g02460, annotated as a short-chain dehydrogenase/reductase SDR family protein, is most likely to be involved in the awnless mutation. Indeed, complementation tests by transformation showed that it is involved in awn formation. Thus, this method is an effective way to accelerate genome breeding of various crop species by enabling the identification of useful genes that can be used for crop breeding with minimal effort for NGS analysis.

3.
Nat Commun ; 13(1): 5665, 2022 09 29.
Article in English | MEDLINE | ID: mdl-36175401

ABSTRACT

Environment is an important determinant of agricultural productivity; therefore, crops have been bred with traits adapted to their environment. It is assumed that the physiology of seed germination is optimised for various climatic conditions. Here, to understand the genetic basis underlying seed germination, we conduct a genome-wide association study considering genotype-by-environment interactions on the germination rate of Japanese rice cultivars under different temperature conditions. We find that a 4 bp InDel in one of the 14-3-3 family genes, GF14h, preferentially changes the germination rate of rice under optimum temperature conditions. The GF14h protein constitutes a transcriptional regulatory module with a bZIP-type transcription factor, OREB1, and a florigen-like protein, MOTHER OF FT AND TFL 2, to control the germination rate by regulating abscisic acid (ABA)-responsive genes. The GF14h loss-of-function allele enhances ABA signalling and reduces the germination rate. This allele is found in rice varieties grown in the northern area and in modern cultivars of Japan and China, suggesting that it contributes to the geographical adaptation of rice. This study demonstrates the complicated molecular system involved in the regulation of seed germination in response to temperature, which has allowed rice to be grown in various geographical locations.


Subject(s)
Germination , Oryza , Abscisic Acid , Basic-Leucine Zipper Transcription Factors , Florigen , Genome-Wide Association Study , Germination/genetics , Oryza/genetics , Plant Breeding , Temperature
4.
Sci Rep ; 11(1): 4532, 2021 02 25.
Article in English | MEDLINE | ID: mdl-33633216

ABSTRACT

Heterosis helps increase the biomass of many crops; however, while models for its mechanisms have been proposed, it is not yet fully understood. Here, we use a QTL analysis of the progeny of a high-biomass sorghum F1 hybrid to examine heterosis. Five QTLs were identified for culm length and were explained using the dominance model. Five resultant homozygous dominant alleles were used to develop pyramided lines, which produced biomasses like the original F1 line. Cloning of one of the uncharacterised genes (Dw7a) revealed that it encoded a MYB transcription factor, that was not yet proactively used in modern breeding, suggesting that combining classic dw1or dw3, and new (dw7a) genes is an important breeding strategy. In conclusion, heterosis is explained in this situation by the dominance model and a combination of genes that balance the shortness and early flowering of the parents, to produce F1 seed yields.


Subject(s)
Genetic Association Studies , Hybrid Vigor/genetics , Models, Genetic , Quantitative Trait Loci , Quantitative Trait, Heritable , Sorghum/genetics , Alleles , Chromosome Mapping , Cloning, Molecular , Gene Expression , Genes, Dominant , Genes, Plant , Hybridization, Genetic , Japan , Plant Breeding
5.
Plant J ; 103(1): 266-278, 2020 07.
Article in English | MEDLINE | ID: mdl-32072700

ABSTRACT

The morphology of rice (Oryza sativa L.) panicles is an important determinant of grain yield, and elucidation of the genetic control of panicle structure is very important for fulfilling the demand for high yield in breeding programs. In a quantitative trait locus (QTL) study using 82 backcross inbred lines (BILs) derived from Koshihikari and Habataki, 68 QTLs for 25 panicle morphological traits were identified. Gene expression profiling from inflorescence meristems of BILs was obtained. A combination of phenotypic QTL (pQTL) and expression QTL (eQTL) analysis revealed co-localization between pQTLs and eQTLs, consistent with significant correlations between phenotypic traits and gene expression levels. By combining pQTL and eQTL data, two genes were identified as controlling panicle structure: OsMADS18 modulates the average length of the primary rachis and OsFTL1 has pleiotropic effects on the total number of secondary rachides, number of grains per panicle, plant height and the length of flag leaves. Phenotypes were confirmed in RNA interference knocked-down plants and overexpressor lines. The combination of pQTL and eQTL analysis could facilitate identification of genes involved in rice panicle formation.


Subject(s)
Genes, Plant/genetics , Inflorescence/genetics , Oryza/genetics , Quantitative Trait Loci/genetics , Edible Grain/genetics , Edible Grain/growth & development , Genome-Wide Association Study , Inflorescence/growth & development , Oryza/growth & development , Quantitative Trait, Heritable , Transcriptome
6.
Proc Natl Acad Sci U S A ; 116(42): 21262-21267, 2019 10 15.
Article in English | MEDLINE | ID: mdl-31570620

ABSTRACT

Elucidation of the genetic control of rice architecture is crucial due to the global demand for high crop yields. Rice architecture is a complex trait affected by plant height, tillering, and panicle morphology. In this study, principal component analysis (PCA) on 8 typical traits related to plant architecture revealed that the first principal component (PC), PC1, provided the most information on traits that determine rice architecture. A genome-wide association study (GWAS) using PC1 as a dependent variable was used to isolate a gene encoding rice, SPINDLY (OsSPY), that activates the gibberellin (GA) signal suppression protein SLR1. The effect of GA signaling on the regulation of rice architecture was confirmed in 9 types of isogenic plant having different levels of GA responsiveness. Further population genetics analysis demonstrated that the functional allele of OsSPY associated with semidwarfism and small panicles was selected in the process of rice breeding. In summary, the use of PCA in GWAS will aid in uncovering genes involved in traits with complex characteristics.


Subject(s)
Oryza/genetics , Genes, Plant/genetics , Genome-Wide Association Study/methods , Gibberellins/metabolism , Oryza/metabolism , Plant Proteins/genetics , Plant Proteins/metabolism , Principal Component Analysis/methods , Quantitative Trait Loci/genetics
7.
J Integr Plant Biol ; 60(2): 130-143, 2018 Feb.
Article in English | MEDLINE | ID: mdl-28574161

ABSTRACT

Previously, we found 123 transcription factors (TFs) as candidate regulators of secondary cell wall (SCW) formation in rice by using phylogenetic and co-expression network analyses. Among them, we examined in this work the role of OsIDD2, a zinc finger and indeterminate domain (IDD) family TF. Its overexpressors showed dwarfism, fragile leaves, and decreased lignin content, which are typical phenotypes of plants defective in SCW formation, whereas its knockout plants showed slightly increased lignin content. The RNA-seq and quantitative reverse transcription polymerase chain reaction analyses confirmed that some lignin biosynthetic genes were downregulated in the OsIDD2-overexpressing plants, and revealed the same case for other genes involved in cellulose synthesis and sucrose metabolism. The transient expression assay using rice protoplasts revealed that OsIDD2 negatively regulates the transcription of genes involved in lignin biosynthesis, cinnamyl alcohol dehydrogenase 2 and 3 (CAD2 and 3), and sucrose metabolism, sucrose synthase 5 (SUS5), whereas an AlphaScreen assay, which can detect the interaction between TFs and their target DNA sequences, directly confirmed the interaction between OsIDD2 and the target sequences located in the promoter regions of CAD2 and CAD3. Based on these observations, we conclude that OsIDD2 is negatively involved in SCW formation and other biological events by downregulating its target genes.


Subject(s)
Cell Wall/metabolism , Oryza/metabolism , Plant Proteins/metabolism , Zinc Fingers , Base Sequence , Gene Expression Regulation, Plant , Lignin/metabolism , Mesophyll Cells/metabolism , Oryza/genetics , Phenotype , Phylogeny , Plant Proteins/genetics , Plants, Genetically Modified , Promoter Regions, Genetic/genetics , Protoplasts/metabolism , RNA Interference , Transcription, Genetic
8.
Science ; 346(6208): 469-73, 2014 Oct 24.
Article in English | MEDLINE | ID: mdl-25342803

ABSTRACT

Some ferns possess the ability to control their sex ratio to maintain genetic variation in their colony with the aid of antheridiogen pheromones, antheridium (male organ)-inducing compounds that are related to gibberellin. We determined that ferns have evolved an antheridiogen-mediated communication system to produce males by modifying the gibberellin biosynthetic pathway, which is split between two individuals of different developmental stages in the colony. Antheridiogen acts as a bridge between them because it is more readily taken up by prothalli than bioactive gibberellin. The pathway initiates in early-maturing prothalli (gametophytes) within a colony, which produce antheridiogens and secrete them into the environment. After the secreted antheridiogen is absorbed by neighboring late-maturing prothalli, it is modified in to bioactive gibberellin to trigger male organ formation.


Subject(s)
Ferns/cytology , Ferns/physiology , Gametogenesis, Plant , Gibberellins/biosynthesis , Pheromones/physiology , Gene Expression , Gibberellins/genetics , Metabolic Networks and Pathways , Molecular Sequence Data , Pheromones/metabolism , Sex Ratio , Spatio-Temporal Analysis
9.
Proc Natl Acad Sci U S A ; 111(21): 7861-6, 2014 May 27.
Article in English | MEDLINE | ID: mdl-24821766

ABSTRACT

DELLA protein is a key negative regulator of gibberellin (GA) signaling. Although how DELLA regulates downstream gene expression remains unclear, DELLA has been proposed to function as a transcriptional activator. However, because DELLA lacks a DNA-binding domain, intermediate protein(s) mediating the DELLA/DNA interaction are believed to be necessary for activating DELLA target genes. Here, using yeast hybrid screenings, we identified five members of indeterminate domain (IDD) protein family which bind physically to both DELLA and the promoter sequence of the GA-positive regulator SCARECROW-LIKE 3 (SCL3), which previously was characterized as a DELLA direct target gene. Transient assays using Arabidopsis protoplasts demonstrated that a luciferase reporter controlled by the SCL3 promoter was additively transactivated by REPRESSOR of ga1-3 (RGA) and IDDs. Phenotypic analysis of transgenic plants expressing AtIDD3 (one of the 16 IDDs in the Arabidopsis genome) fused with the plant-specific repression domain (SRDX) supported the possibility that AtIDD3 is positively involved in GA signaling. In addition, we found that SCL3 protein also interacts with IDDs, resulting in the suppression of its target gene expression. In this context, DELLA and SCL3 interact competitively with IDD proteins to regulate downstream gene expression. These results suggest that the coregulators DELLA and SCL3, using IDDs as transcriptional scaffolds for DNA binding, antagonistically regulate the expression of their downstream targets to control the GA signaling pathway.


Subject(s)
Arabidopsis Proteins/metabolism , Arabidopsis Proteins/physiology , Arabidopsis/metabolism , Co-Repressor Proteins/metabolism , DNA-Binding Proteins/genetics , Gene Expression Regulation, Plant/physiology , Plant Proteins/metabolism , Transcription Factors/metabolism , Transcriptional Activation/genetics , Arabidopsis Proteins/genetics , Co-Repressor Proteins/genetics , DNA Primers , Gene Expression Regulation, Plant/genetics , Two-Hybrid System Techniques
SELECTION OF CITATIONS
SEARCH DETAIL
...