Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 8 de 8
Filter
Add more filters










Database
Language
Publication year range
1.
Nat Commun ; 15(1): 969, 2024 Feb 07.
Article in English | MEDLINE | ID: mdl-38326341

ABSTRACT

Natural aerosol feedbacks are expected to become more important in the future, as anthropogenic aerosol emissions decrease due to air quality policy. One such feedback is initiated by the increase in biogenic volatile organic compound (BVOC) emissions with higher temperatures, leading to higher secondary organic aerosol (SOA) production and a cooling of the surface via impacts on cloud radiative properties. Motivated by the considerable spread in feedback strength in Earth System Models (ESMs), we here use two long-term observational datasets from boreal and tropical forests, together with satellite data, for a process-based evaluation of the BVOC-aerosol-cloud feedback in four ESMs. The model evaluation shows that the weakest modelled feedback estimates can likely be excluded, but highlights compensating errors making it difficult to draw conclusions of the strongest estimates. Overall, the method of evaluating along process chains shows promise in pin-pointing sources of uncertainty and constraining modelled aerosol feedbacks.

2.
Sci Adv ; 9(48): eadi3568, 2023 Dec.
Article in English | MEDLINE | ID: mdl-38039365

ABSTRACT

Absorbing aerosols emitted from biomass burning (BB) greatly affect the radiation balance, cloudiness, and circulation over tropical regions. Assessments of these impacts rely heavily on the modeled aerosol absorption from poorly constrained global models and thus exhibit large uncertainties. By combining the AeroCom model ensemble with satellite and in situ observations, we provide constraints on the aerosol absorption optical depth (AAOD) over the Amazon and Africa. Our approach enables identification of error contributions from emission, lifetime, and MAC (mass absorption coefficient) per model, with MAC and emission dominating the AAOD errors over Amazon and Africa, respectively. In addition to primary emissions, our analysis suggests substantial formation of secondary organic aerosols over the Amazon but not over Africa. Furthermore, we find that differences in direct aerosol radiative effects between models decrease by threefold over the BB source and outflow regions after correcting the identified errors. This highlights the potential to greatly reduce the uncertainty in the most uncertain radiative forcing agent.

3.
Ambio ; 52(5): 976-994, 2023 May.
Article in English | MEDLINE | ID: mdl-36735103

ABSTRACT

Interactions in urban environment were investigated using a multidisciplinary model combination, with focus on traffic, emissions and atmospheric particles. An agent-based model was applied to simulate the evolution of unsustainable human behavior (usage of combustion-based personal vehicles) as a function of pro-environmental affordances (opportunities for sustainable choices). Scenarios regarding changes in multi-pollutant emissions were derived, and the non-linear implications to atmospheric particles were simulated with a box model. Based on the results for a Nordic city, increasing pro-environmental affordances by 10%, 50% or 100% leads to emission reductions of 15%, 30% and 40% within 2 years. To reduce ambient particle mass, emissions from traffic should decrease by > 15%, while the lung deposited surface area decreases in all scenarios ([Formula: see text], [Formula: see text] and [Formula: see text], correspondingly). The presented case is representative of one season, but the approach is generic and applicable to simulating a full year, given meteorological and pollution data that reflects seasonal variation. This work emphasizes the necessity to consider feedback mechanisms and non-linearities in both human behavior and atmospheric processes, when predicting the outcomes of changes in an urban system.


Subject(s)
Air Pollutants , Air Pollution , Humans , Air Pollutants/analysis , Vehicle Emissions/analysis , Environmental Monitoring/methods , Air Pollution/analysis , Cities , Particulate Matter/analysis
4.
Nat Commun ; 13(1): 7357, 2022 Nov 30.
Article in English | MEDLINE | ID: mdl-36446763

ABSTRACT

One major source of uncertainty in the cloud-mediated aerosol forcing arises from the magnitude of the cloud liquid water path (LWP) adjustment to aerosol-cloud interactions, which is poorly constrained by observations. Many of the recent satellite-based studies have observed a decreasing LWP as a function of cloud droplet number concentration (CDNC) as the dominating behavior. Estimating the LWP response to the CDNC changes is a complex task since various confounding factors need to be isolated. However, an important aspect has not been sufficiently considered: the propagation of natural spatial variability and errors in satellite retrievals of cloud optical depth and cloud effective radius to estimates of CDNC and LWP. Here we use satellite and simulated measurements to demonstrate that, because of this propagation, even a positive LWP adjustment is likely to be misinterpreted as negative. This biasing effect therefore leads to an underestimate of the aerosol-cloud-climate cooling and must be properly considered in future studies.

5.
Nat Commun ; 13(1): 5914, 2022 10 07.
Article in English | MEDLINE | ID: mdl-36207322

ABSTRACT

Biomass burning (BB) is a major source of aerosols that remain the most uncertain components of the global radiative forcing. Current global models have great difficulty matching observed aerosol optical depth (AOD) over BB regions. A common solution to address modelled AOD biases is scaling BB emissions. Using the relationship from an ensemble of aerosol models and satellite observations, we show that the bias in aerosol modelling results primarily from incorrect lifetimes and underestimated mass extinction coefficients. In turn, these biases seem to be related to incorrect precipitation and underestimated particle sizes. We further show that boosting BB emissions to correct AOD biases over the source region causes an overestimation of AOD in the outflow from Africa by 48%, leading to a double warming effect compared with when biases are simultaneously addressed for both aforementioned factors. Such deviations are particularly concerning in a warming future with increasing emissions from fires.


Subject(s)
Air Pollutants , Fires , Aerosols/analysis , Air Pollutants/analysis , Bias , Biomass , Environmental Monitoring/methods
6.
Proc Natl Acad Sci U S A ; 119(32): e2201729119, 2022 Aug 09.
Article in English | MEDLINE | ID: mdl-35917351

ABSTRACT

The gas-phase formation of new particles less than 1 nm in size and their subsequent growth significantly alters the availability of cloud condensation nuclei (CCN, >30-50 nm), leading to impacts on cloud reflectance and the global radiative budget. However, this growth cannot be accounted for by condensation of typical species driving the initial nucleation. Here, we present evidence that nucleated iodine oxide clusters provide unique sites for the accelerated growth of organic vapors to overcome the coagulation sink. Heterogeneous reactions form low-volatility organic acids and alkylaminium salts in the particle phase, while further oligomerization of small α-dicarbonyls (e.g., glyoxal) drives the particle growth. This identified heterogeneous mechanism explains the occurrence of particle production events at organic vapor concentrations almost an order of magnitude lower than those required for growth via condensation alone. A notable fraction of iodine associated with these growing particles is recycled back into the gas phase, suggesting an effective transport mechanism for iodine to remote regions, acting as a "catalyst" for nucleation and subsequent new particle production in marine air.

7.
Nat Commun ; 12(1): 5637, 2021 09 24.
Article in English | MEDLINE | ID: mdl-34561456

ABSTRACT

Aerosol particles cool the climate by scattering solar radiation and by acting as cloud condensation nuclei. Higher temperatures resulting from increased greenhouse gas levels have been suggested to lead to increased biogenic secondary organic aerosol and cloud condensation nuclei concentrations creating a negative climate feedback mechanism. Here, we present direct observations on this feedback mechanism utilizing collocated long term aerosol chemical composition measurements and remote sensing observations on aerosol and cloud properties. Summer time organic aerosol loadings showed a clear increase with temperature, with simultaneous increase in cloud condensation nuclei concentration in a boreal forest environment. Remote sensing observations revealed a change in cloud properties with an increase in cloud reflectivity in concert with increasing organic aerosol loadings in the area. The results provide direct observational evidence on the significance of this negative climate feedback mechanism.

8.
Nat Commun ; 12(1): 277, 2021 01 12.
Article in English | MEDLINE | ID: mdl-33436592

ABSTRACT

Uncertainty in the representation of biomass burning (BB) aerosol composition and optical properties in climate models contributes to a range in modeled aerosol effects on incoming solar radiation. Depending on the model, the top-of-the-atmosphere BB aerosol effect can range from cooling to warming. By relating aerosol absorption relative to extinction and carbonaceous aerosol composition from 12 observational datasets to nine state-of-the-art Earth system models/chemical transport models, we identify varying degrees of overestimation in BB aerosol absorptivity by these models. Modifications to BB aerosol refractive index, size, and mixing state improve the Community Atmosphere Model version 5 (CAM5) agreement with observations, leading to a global change in BB direct radiative effect of -0.07 W m-2, and regional changes of -2 W m-2 (Africa) and -0.5 W m-2 (South America/Temperate). Our findings suggest that current modeled BB contributes less to warming than previously thought, largely due to treatments of aerosol mixing state.

SELECTION OF CITATIONS
SEARCH DETAIL
...