Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 89
Filter
1.
J Clin Med ; 13(17)2024 Sep 06.
Article in English | MEDLINE | ID: mdl-39274513

ABSTRACT

Background/Objectives: Free amino acids substantially contribute to energy metabolism. Also, their profile may identify (over)training status and effectiveness. The long-term effects of speed-power training on plasma free amino acid (PFAA) profiles are not known. We aimed to observe variations in PFAA levels in high-performance sprinters in a six-month training cycle. Methods: Ten male athletes (24.6 ± 3.3 years) were examined during four training phases: transition (1 month), general preparation (2 months), specific preparation (1 month), and pre-competition/competition (2 months). Venous blood was collected at rest, after exhaustive exercise, and recovery. Forty-two PFAAs were analyzed by the LC-ESI-MS/MS method. Results: Significant decreases in resting concentrations were observed between the transition and competition phases for glutamine (762 ± 117 vs. 623 ± 53 µmol∙L-1; p < 0.001, η2 = 0.47) and histidine (89 ± 15 vs. 75 ± 10 µmol∙L-1; p = 0.010, η2 = 0.27), whereas ß-alanine (30 ± 7 vs. 41 ± 9 µmol∙L-1; p = 0.024, η2 = 016) and sarcosine (3.6 ± 0.4 vs. 4.8 ± 0.6 µmol∙L-1; p = 0.006, η2 = 0.188) levels increased. Between the specific and competition phases, significant decreases in the resting levels of 1-methylhistidine (22.1 ± 19.4 vs. 9.6 ± 8.8 µmol∙L-1; p = 0.14, η2 = 0.19), 3-methylhistidine (7.1 ± 1.5 vs. 6.5 ± 1.6 µmol∙L-1; p = 0.009, η2 = 0.18), citrulline (40 ± 10 vs. 29 ± 4 µmol∙L-1; p = 0.05, η2 = 0.29), and ornithine (74 ± 15 vs. 56 ± 10 µmol∙L-1; p = 0.015, η2 = 185) were noticed. Also, for ß-alanine and sarcosine, the pattern of response to exercise strongly changed between the training phases. Blood ammonia levels at exhaustion decreased between the transition and competition phases (32 ± 4 vs. 23 ± 5 µmol∙L-1; p < 0.001, η2 = 0.67), while lactate, the phenylalanine-tyrosine ratio, the glutamine-glutamate ratio, hematological parameters, and cardiorespiratory indices remained at similar levels. Conclusions: Speed-power training seems to affect PFAAs involved in skeletal muscle metabolic pathways responsible for neutralizing toxic ammonia (glutamine, arginine, citrulline, ornithine), attenuating the deleterious effects of H+ ions (histidine, ß-alanine), and reducing exercise-induced protein breakdown (1- and 3-methylhistidine). Our findings suggest that sprint-oriented training supports metabolic pathways that are responsible for the removal of harmful metabolites produced during exercise.

2.
PLoS One ; 19(8): e0309529, 2024.
Article in English | MEDLINE | ID: mdl-39213376

ABSTRACT

Circulating blood is an important plasma free amino acids (PFAAs) reservoir and a pivotal link between metabolic pathways. No comparisons are available between athletes with opposite training adaptations that include a broader spectrum of both proteinogenic and non-proteinogenic amino acids, and that take into account skeletal muscle mass. We hypothesized that the levels of the exercise-induced PFAAs concentration are related to the type of training-related metabolic adaptation. We compared highly trained endurance athletes (n = 11) and sprinters (n = 10) aged 20‒35 years who performed incremental exercise until exhaustion. Venous blood was collected before and during the test and 30-min recovery (12 samples). Forty-two PFAAs were assayed using LC-ESI-MS/MS technique. Skeletal muscle mass was estimated using dual X-ray absorptiometry method. Glutamine and alanine were dominant PFAAs throughout the whole exercise and recovery period (~350‒650 µmol∙L-1). Total, combined proteinogenic, non-essential, and non-proteinogenic PFAAs levels were significantly higher in endurance athletes than sprinters (ANOVA group effects: p = 0.007, η2 = 0.321; p = 0.011, η2 = 0.294; p = 0.003, η2 = 0.376; p = 0.001, η2 = 0.471, respectively). The exercise response was more pronounced in endurance athletes, especially for non-proteinogenic PFAAs (ANOVA interaction effect: p = 0.038, η2 = 0.123). Significant between-group differences were observed for 19 of 33 PFAAs detected, including 4 essential, 7 non-essential, and 8 non-proteinogenic ones. We demonstrated that the PFAAs response to incremental aerobic exercise is associated with the type of training-related metabolic adaptation. A greater turnover and availability of circulating PFAAs for skeletal muscles and other body tissues is observed in endurance- than in sprint-trained individuals. Non-proteinogenic PFAAs, despite low concentrations, also respond to exercise loads, indicating their important, though less understood role in exercise metabolism. Our study provides additional insight into the exercise-induced physiological response of PFAAs, and may also provide a rationale in discussions regarding dietary amino acid requirements in high-performance athletes with respect to sports specialization.


Subject(s)
Amino Acids , Athletes , Exercise , Physical Endurance , Humans , Adult , Amino Acids/blood , Amino Acids/metabolism , Male , Physical Endurance/physiology , Exercise/physiology , Young Adult , Muscle, Skeletal/metabolism , Female , Adaptation, Physiological , Running/physiology
3.
Sci Rep ; 14(1): 15444, 2024 07 04.
Article in English | MEDLINE | ID: mdl-38965272

ABSTRACT

Tobacco smoking is the main etiological factor of lung cancer (LC), which can also cause metabolome disruption. This study aimed to investigate whether the observed metabolic shift in LC patients was also associated with their smoking status. Untargeted metabolomics profiling was applied for the initial screening of changes in serum metabolic profile between LC and chronic obstructive pulmonary disease (COPD) patients, selected as a non-cancer group. Differences in metabolite profiles between current and former smokers were also tested. Then, targeted metabolomics methods were applied to verify and validate the proposed LC biomarkers. For untargeted metabolomics, a single extraction-dual separation workflow was applied. The samples were analyzed using a liquid chromatograph-high resolution quadrupole time-of-flight mass spectrometer. Next, the selected metabolites were quantified using liquid chromatography-triple-quadrupole mass spectrometry. The acquired data confirmed that patients' stratification based on smoking status impacted the discriminating ability of the identified LC marker candidates. Analyzing a validation set of samples enabled us to determine if the putative LC markers were truly robust. It demonstrated significant differences in the case of four metabolites: allantoin, glutamic acid, succinic acid, and sphingosine-1-phosphate. Our research showed that studying the influence of strong environmental factors, such as tobacco smoking, should be considered in cancer marker research since it reduces the risk of false positives and improves understanding of the metabolite shifts in cancer patients.


Subject(s)
Biomarkers, Tumor , Lung Neoplasms , Metabolomics , Smoking , Humans , Lung Neoplasms/blood , Lung Neoplasms/metabolism , Metabolomics/methods , Biomarkers, Tumor/blood , Male , Female , Middle Aged , Smoking/blood , Smoking/adverse effects , Aged , Sphingosine/analogs & derivatives , Sphingosine/blood , Sphingosine/metabolism , Lysophospholipids/blood , Lysophospholipids/metabolism , Metabolome , Pulmonary Disease, Chronic Obstructive/metabolism , Pulmonary Disease, Chronic Obstructive/blood , Chromatography, Liquid/methods , Succinic Acid/blood , Succinic Acid/metabolism , Glutamic Acid/blood , Glutamic Acid/metabolism
4.
Metabolites ; 14(7)2024 Jun 23.
Article in English | MEDLINE | ID: mdl-39057676

ABSTRACT

We aimed to evaluate long-term changes in proteinogenic and non-proteinogenic plasma free amino acids (PFAA). Eleven male endurance triathletes participated in a 9-month study. Blood was collected at rest, immediately after exhaustive exercise, and during 30-min recovery, in four consecutive training phases: transition, general, specific, and competition. Twenty proteinogenic and 22 non-proteinogenic PFAAs were assayed using the LC-ESI-MS/MS technique. The structured training modified the patterns of exercise-induced PFAA response, with the competition phase being the most distinct from the others. Branched-chain amino acids (p = 0.002; η2 = 0.216), phenylalanine (p = 0.015; η2 = 0.153), methionine (p = 0.002; η2 = 0.206), and lysine (p = 0.006; η2 = 0.196) declined more rapidly between rest and exhaustion in the competition phase. Glutamine (p = 0.008; η2 = 0.255), glutamate (p = 0.006; η2 = 0.265), tyrosine (p = 0.001; η2 = 0.195), cystine (p = 0.042; η2 = 0.183), and serine (p < 0.001; η2 = 0.346) levels were reduced in the competition phase. Arginine (p = 0.046; η2 = 0.138) and aspartate (p = 0.011; η2 = 0.171) levels were highest during exercise in the transition phase. During the competition phase, α-aminoadipic acid (p = 0.023; η2 = 0.145), ß-aminoisobutyric acid (p = 0.007; η2 = 0.167), ß-alanine (p < 0.001; η2 = 0.473), and sarcosine (p = 0.017; η2 = 0.150) levels increased, whereas phosphoethanolamine (p = 0.037; η2 = 0.189) and taurine (p = 0.008; η2 = 0.251) concentrations decreased. Overtraining indicators were not elevated. The altered PFAA profile suggests adaptations within energy metabolic pathways such as the tricarboxylic acid cycle, oxidative phosphorylation, ammonia neutralization, the purine nucleotide cycle, and buffering of intracellular H+ ions. The changes seem to reflect normal adaptations.

5.
Med Sci Monit ; 30: e944120, 2024 Jun 21.
Article in English | MEDLINE | ID: mdl-38902914

ABSTRACT

The 'recreational use' of selected over-the-counter (OTC) medicines is an unofficial activity. The traditional surveys assessing the use of drugs are affected by the bias of underreporting and are thus unreliable. The development of analytical techniques helps to monitor the substances at trace levels, such as in wastewater, and might be applied to estimate the consumption of an analyte of interest and ensure additional, evidence-based information complementary to population surveys. We reviewed studies focused on evaluating the estimated consumption of drugs as a reliable and unbiased source of evidence-based information (called wastewater-based epidemiology, WBE) to monitor the scale of this phenomenon. We found there is a need to test not only narcotics in the environment but also medicines that may be abused or recreationally used. The reviewed studies show methods that might provide reliable information about consumption of drugs, narcotics, and OTC medications for proposing targeted, preventive actions. Moreover, as all the selected studies were based on mass spectrometry, there is a potential to include the dextromethorphan and/or related compounds as part of the screening for narcotics and OTC drugs that can be socially harmful, overused, or misused. This article reviews the analytical methods for detecting dextromethorphan and/or its transformation products in environmental water samples.


Subject(s)
Dextromethorphan , Illicit Drugs , Nonprescription Drugs , Wastewater , Dextromethorphan/analysis , Nonprescription Drugs/analysis , Wastewater/chemistry , Humans , Illicit Drugs/analysis , Recreational Drug Use , Substance Abuse Detection/methods , Wastewater-Based Epidemiological Monitoring , Water Pollutants, Chemical/analysis
6.
Int J Mol Sci ; 24(19)2023 Sep 25.
Article in English | MEDLINE | ID: mdl-37833976

ABSTRACT

Endometrial cancer is the most common gynecological cancer worldwide. Classifying endometrial cancer into low- or high-risk groups based on the following features is recommended: tumor grade, lymphovascular space invasion, myometrial involvement, and non-endometrioid histology. Despite the recent progress in molecular profiling of endometrial cancer, a substantial group of patients are misclassified based on the current criteria. This study aimed to identify proteins that could be used as biomarkers for the stratification of endometrial cancer patients into low- or high-risk groups. The proteomic analysis of serum samples from endometrial cancer patients was performed using matrix-assisted laser desorption/ionization-time of flight mass spectrometry (MALDI-TOF MS). The data were then analyzed using chemometric algorithms to identify potential biomarkers. Nineteen precursor ions were identified as fragments of eighteen proteins which included (1) connective tissue matrix proteins, (2) cytoskeletal proteins, and (3) innate immune system molecules and stress proteins. These biomarkers could be used to stratify the high- and low-risk patients, thus enabling more precise treatment decisions.


Subject(s)
Endometrial Neoplasms , Proteomics , Female , Humans , Proteomics/methods , Biomarkers , Proteins , Endometrial Neoplasms/pathology , Spectrometry, Mass, Matrix-Assisted Laser Desorption-Ionization/methods , Biomarkers, Tumor
7.
Cancer Cell Int ; 22(1): 414, 2022 Dec 19.
Article in English | MEDLINE | ID: mdl-36536419

ABSTRACT

Mass spectrometry imaging (MSI) enables obtaining multidimensional results simultaneously in a single run, including regiospecificity and m/z values corresponding with specific proteins, peptides, lipids, etc. The knowledge obtained in this way allows for a multifaceted analysis of the studied issue, e.g., the specificity of the neoplastic process and the search for new therapeutic targets. Despite the enormous possibilities, this relatively new technique in many aspects still requires the development or standardization of analytical protocols (from collecting biological material, through sample preparation, analysis, and data collection, to data processing). The introduction of standardized protocols for MSI studies, with its current potential to extend diagnostic and prognostic capabilities, can revolutionize clinical pathology. As far as identifying ovarian cancer subtypes can be challenging, especially in poorly differentiated tumors, developing MSI-based algorithms may enhance determining prognosis and tumor staging without the need for extensive surgery and optimize the choice of subsequent therapy. MSI might bring new solutions in predicting response to treatment in patients with endometrial cancer. Therefore, MSI may help to revolutionize the future of gynecological oncology in terms of diagnostics, treatment, and predicting the response to therapy. This review will encompass several aspects, e.g., contemporary discoveries in gynecological cancer research utilizing MSI, indicates current challenges, and future perspectives on MSI.

8.
Pharmaceuticals (Basel) ; 14(9)2021 Sep 17.
Article in English | MEDLINE | ID: mdl-34577635

ABSTRACT

Parkinson's disease (PD) is a major public health problem. Since currently there are no reliable diagnostic tools to reveal the early steps of PD, new methods should be developed, including those searching the variations in human metabolome. Alterations in human metabolites could help to establish an earlier and more accurate diagnosis. The presented research shows a targeted metabolomics study of both of the serum and CSF from PD patients, atypical parkinsonian disorders (APDs) patients, and the control. The use of the LC-MS/MS system enabled to quantitate 144 analytes in the serum and 51 in the CSF. This information about the concentration enabled for selection of the metabolites useful for differentiation between the studied group of patients, which should be further evaluated as candidates for markers of screening and differential diagnosis of PD and APDs. Among them, the four compounds observed to be altered in both the serum and CSF seem to be the most important: tyrosine, putrescine, trans-4-hydroxyproline, and total dimethylarginine. Furthermore, we indicated the metabolic pathways potentially related to neurodegeneration processes. Our studies present evidence that the proline metabolism might be related to neurodegeneration processes underlying PD and APDs. Further studies on the proposed metabolites and founded metabolic pathways may significantly contribute to understanding the molecular background of PD and improving the diagnostics and treatment in the future.

9.
Pharmaceuticals (Basel) ; 14(8)2021 Jul 27.
Article in English | MEDLINE | ID: mdl-34451829

ABSTRACT

Gynecological and breast cancers still remain a significant health problem worldwide. Diagnostic methods are not sensitive and specific enough to detect the disease at an early stage. During carcinogenesis and tumor progression, the cellular need for DNA and protein synthesis increases leading to changes in the levels of amino acids. An important role of amino acids in many biological pathways, including biosynthesis of proteins, nucleic acids, enzymes, etc., which serve as an energy source and maintain redox balance, has been highlighted in many research articles. The aim of this review is a detailed analysis of the literature on metabolomic studies of gynecology and breast cancers with particular emphasis on alterations in free amino acid profiles. The work includes a brief overview of the metabolomic methodology and types of biological samples used in the studies. Special attention was paid to the possible role of selected amino acids in the carcinogenesis, especially proline and amino acids related to its metabolism. There is a clear need for further research and multiple external validation studies to establish the role of amino acid profiling in diagnosing gynecological and breast cancers.

10.
Molecules ; 26(9)2021 Apr 21.
Article in English | MEDLINE | ID: mdl-33919229

ABSTRACT

Beehive products possess nutritional value and health-promoting properties and are recommended as so-called "superfoods". However, because of their natural origin, they may contain relevant elemental contaminants. Therefore, to assess the quality of bee products, we examined concentrations of a broad range of 24 selected elements in propolis, bee pollen, and royal jelly. The quantitative analyses were performed with inductively coupled plasma-mass spectrometry (ICP-MS) and inductively coupled plasma optical emission spectrometry (ICP-OES) techniques. The results of our research indicate that bee products contain essential macronutrients (i.e., K, P, and S) and micronutrients (i.e., Zn and Fe) in concentrations depending on the products' type. However, the presence of toxic heavy metals makes it necessary to test the quality of bee products before using them as dietary supplements. Bearing in mind that bee products are highly heterogenous and, depending on the environmental factors, differ in their elemental content, it is necessary to develop standards regulating the acceptable levels of inorganic pollutants. Furthermore, since bees and their products are considered to be an effective biomonitoring tool, our results may reflect the environment's condition in west-central Poland, affecting the health and well-being of both humans and bees.


Subject(s)
Bees , Fatty Acids/analysis , Finite Element Analysis , Food Analysis , Pollen/chemistry , Propolis/analysis , Animals , Honey/analysis , Mass Spectrometry , Poland , Spectrum Analysis
11.
Article in English | MEDLINE | ID: mdl-33672144

ABSTRACT

Proper preoperative ovarian cancer (OC) diagnosis remains challenging. Serum free amino acid (SFAA) profiles were investigated to identify potential novel biomarkers of OC and assess their performance in ovarian tumor differential diagnosis. Serum samples were divided based on the histopathological result: epithelial OC (n = 38), borderline ovarian tumors (n = 6), and benign ovarian tumors (BOTs) (n = 62). SFAA profiles were evaluated using aTRAQ methodology based on high-performance liquid chromatography electrospray ionization tandem mass spectrometry (HPLC-ESI-MS/MS). Levels of eleven amino acids significantly differed between OC+borderline and BOTs. The highest area under the receiver operating characteristic curve (AUC of ROC) (0.787) was obtained for histidine. Cystine and histidine were identified as best single markers for early stage OC/BOT and type I OC. For advanced stage OC, seven amino acids differed significantly between the groups and citrulline obtained the best AUC of 0.807. Between type II OC and BOTs, eight amino acids differed significantly and the highest AUC of 0.798 was achieved by histidine and citrulline (AUC of 0.778). Histidine was identified as a potential new biomarker in differential diagnosis of ovarian tumors. Adding histidine to a multimarker panel together with CA125 and HE4 improved the differential diagnosis between OC and BOTs.


Subject(s)
Ovarian Neoplasms , Tandem Mass Spectrometry , Amino Acids , Biomarkers, Tumor , Diagnosis, Differential , Female , Humans , Ovarian Neoplasms/diagnosis , ROC Curve
12.
Article in English | MEDLINE | ID: mdl-33668851

ABSTRACT

INTRODUCTION: Protein profiling allows the determination of the presence of proteins marking various stages of the disease, and differentiates between people at risk of various diseases. In type 1 diabetes, protein profiling had been previously used to find blood markers other than islet autoantibodies to indicate the pancreatic beta cell destruction process and to reflect the progression of type 1 diabetes mellitus (T1DM). However, T1DM is an auto-immune disease and its clinical presentation changes in time of its duration. THE AIM OF THE STUDY: To find differences in protein profiles in patients with type 1 diabetes according to diabetes control (HbA1c > 7%) and with presence of diabetic complications or obesity. It may help to identify subgroups of patients who may need a better clinical supervision and individualized treatment. MATERIAL AND METHODS: A group of 103 patients with auto-immunologically confirmed T1DM, and meeting the following inclusion criteria: Caucasian race, duration of diabetes >5 years, were used in the study. Criteria of exclusion: past or present cancer (treated with chemo-/radiotherapy), diseases of the liver (ALT > 3 × ULN) except for people with simple hepatic steatosis, chronic renal disease (eGFR < 30 mL/1.73 m2/min), and acute inflammation (CRP > 5 mg/dL). The study group was divided in terms of the presence of chronic complications, obesity, or poor metabolic control (HbA1c > 7%). Protein profiling was completed by using the MALDI-TOF MS (matrix-assisted laser desorption/ionization-time of flight mass spectrometry) analyzer. RESULTS: Differentiating proteins were identified in all of the groups. The groups burdened with complications, obesity, and poor metabolic control were characterized by increased levels of fibrinogen, complement C4 and C3. CONCLUSION: The groups of type 1 diabetes patients burdened with complications, obesity, and poor metabolic control were characterized by increased levels of fibrinogen, complement C4 and C3. Further detailed studies are necessary to determine more subtle changes in the proteomic profile of patients with type 1 diabetes.


Subject(s)
Diabetes Mellitus, Type 1 , Adipose Tissue , Humans , Proteins , Proteomics , Spectrometry, Mass, Matrix-Assisted Laser Desorption-Ionization
13.
Sci Rep ; 10(1): 21645, 2020 12 10.
Article in English | MEDLINE | ID: mdl-33303913

ABSTRACT

Honeybee (Apis mellifera) venom (HBV) has been a subject of extensive proteomics research; however, scarce information on its metabolite composition can be found in the literature. The aim of the study was to identify and quantify the metabolites present in HBV. To gain the highest metabolite coverage, three different mass spectrometry (MS)-based methodologies were applied. In the first step, untargeted metabolomics was used, which employed high-resolution, accurate-mass Orbitrap MS. It allowed obtaining a broad overview of HBV metabolic components. Then, two targeted metabolomics approaches, which employed triple quadrupole MS, were applied to quantify metabolites in HBV samples. The untargeted metabolomics not only confirmed the presence of amines, amino acids, carbohydrates, and organic acids in HBV, but also provided information on venom components from other metabolite classes (e.g., nucleosides, alcohols, purine and pyrimidine derivatives). The combination of three MS-based metabolomics platforms facilitated the identification of 214 metabolites in HBV samples, among which 138 were quantified. The obtaining of the wide free amino acid profiles of HBV is one of the project's achievements. Our study contributed significantly to broadening the knowledge about HBV composition and should be continued to obtain the most comprehensive metabolite profile of HBV.


Subject(s)
Bee Venoms/chemistry , Bees/metabolism , Metabolomics , Amino Acids/analysis , Animals , Bee Venoms/analysis , Bee Venoms/metabolism , Chromatography, High Pressure Liquid , Limit of Detection , Mass Spectrometry , Molecular Weight
14.
Molecules ; 25(20)2020 Oct 12.
Article in English | MEDLINE | ID: mdl-33053735

ABSTRACT

A growing interest in metabolomics studies of cultured cells requires development not only untargeted methods capable of fingerprinting the complete metabolite profile but also targeted methods enabling the precise and accurate determination of a selected group of metabolites. Proline metabolism affects many crucial processes at the cellular level, including collagen biosynthesis, redox balance, energetic processes as well as intracellular signaling. The study aimed to develop a robust and easy-to-use targeted metabolomics method for the determination of the intracellular level of proline and the other two amino acids closely related to proline metabolism: glutamic acid and arginine. The method employs hydrophilic interaction liquid chromatography followed by high-resolution, accurate-mass mass spectrometry for reliable detection and quantification of the target metabolites in cell lysates. The sample preparation consisted of quenching by the addition of ice-cold methanol and subsequent cell scraping into a quenching solution. The method validation showed acceptable linearity (r > 0.995), precision (%RSD < 15%), and accuracy (88.5-108.5%). Pilot research using HaCaT spontaneously immortalized human keratinocytes in a model for wound healing was performed, indicating the usefulness of the method in studies of disturbances in proline metabolism. The developed method addresses the need to determine the intracellular concentration of three key amino acids and can be used routinely in targeted mammalian cell culture metabolomics research.


Subject(s)
Chromatography, Liquid/methods , Mass Spectrometry/methods , Metabolomics/methods , Proline/metabolism , Amino Acids/metabolism , Cell Line , Humans , Keratinocytes/cytology , Keratinocytes/metabolism
15.
Article in English | MEDLINE | ID: mdl-33080944

ABSTRACT

This study presents the use of matrix-assisted laser desorption and ionization mass spectrometry imaging (MALDI-MSI) directly on the tissue of two ovarian tumors that often present a diagnostic challenge, a low-grade serous borderline ovarian tumor and ovarian fibrothecoma. Different spatial distribution of m/z values within the tissue samples was observed, and regiospecific peaks were identified. Among the 106 peaks in the borderline ovarian tumor five, regiospecific peaks (m/z: 2861.35; 2775.79; 3368.34; 3438.43; 4936.37) were selected using FlexImaging software. Subsequently, the distribution of those selected peaks was visualized on the fibrothecoma tissue section, which demonstrated the differences in the tissue homo-/heterogeneous structure of both tumors. The comparison with the histopathological staining of the ovarian borderline tumor tissue section, obtained during serial sectioning, showed a close correlation of the molecular map with the morphological and histopathological features of the tissue and allowed the identification of different tissue types within the sample. This study highlights the potential significance of MSI in enabling morphological characterization of ovarian tumors as well as correct diagnosis and further prognosis than thus far seen in the literature. Osteopontin, tropomyosin and orosomucoid are only a couple of the molecules investigated using MALDI-MSI in ovarian cancer research. This study, in line with the available literature, proves the potential of MALDI-MSI to overcome the current limitations of classic histopathological examination giving a more in-depth insight into the tissue structure and thus lead to the more accurate differential diagnosis of ovarian tumors, especially in the most challenging cases.


Subject(s)
Fibroma , Ovarian Neoplasms/diagnosis , Spectrometry, Mass, Matrix-Assisted Laser Desorption-Ionization/methods , Female , Humans
16.
Article in English | MEDLINE | ID: mdl-32630672

ABSTRACT

Asthma often begins in childhood, although making an early diagnosis is difficult. Clinical manifestations, the exclusion of other causes of bronchial obstruction, and responsiveness to anti-inflammatory therapy are the main tool of diagnosis. However, novel, precise, and functional biochemical markers are needed in the differentiation of asthma phenotypes, endotypes, and creating personalized therapy. The aim of the study was to search for metabolomic-based asthma biomarkers among free amino acids (AAs). A wide panel of serum-free AAs in asthmatic children, covering both proteinogenic and non-proteinogenic AAs, were analyzed. The examination included two groups of individuals between 3 and 18 years old: asthmatic children and the control group consisted of children with neither asthma nor allergies. High-performance liquid chromatography combined with tandem mass spectrometry (LC-MS/MS technique) was used for AA measurements. The data were analyzed by applying uni- and multivariate statistical tests. The obtained results indicate the decreased serum concentration of taurine, L-valine, DL-ß-aminoisobutyric acid, and increased levels of Æ´-amino-n-butyric acid and L-arginine in asthmatic children when compared to controls. The altered concentration of these AAs can testify to their role in the pathogenesis of childhood asthma. The authors' results should contribute to the future introduction of new diagnostic markers into clinical practice.


Subject(s)
Amino Acids/metabolism , Asthma/physiopathology , Adolescent , Asthma/diagnosis , Biomarkers , Child , Child, Preschool , Chromatography, Liquid , Female , Humans , Male , Metabolomics , Tandem Mass Spectrometry
17.
Metabolites ; 10(5)2020 May 13.
Article in English | MEDLINE | ID: mdl-32413967

ABSTRACT

Red blood cells (RBCs) are the most abundant cells in the human blood that have been extensively studied under morphology, ultrastructure, biochemical and molecular functions. Therefore, RBCs are excellent cell models in the study of biologically active compounds like drugs and toxins on the structure and function of the cell membrane. The aim of the present study was to explore erythrocyte ghost's proteome to identify changes occurring under the influence of three bee venom peptides-melittin, tertiapin, and apamin. We conducted preliminary experiments on the erythrocyte ghosts incubated with these peptides at their non-hemolytic concentrations. Such preparations were analyzed using liquid chromatography coupled with tandem mass spectrometry. It was found that when higher concentrations of melittin and apamin were used, fewer proteins were identified. Moreover, the results clearly indicated that apamin demonstrates the greatest influence on the RBCs ghosts proteome. Interestingly, the data also suggest that tertiapin exerted a stabilizing effect on the erythrocyte membrane. The experiments carried out show the great potential of proteomic research in the projects focused on the toxin's properties as membrane active agents. However, to determine the specificity of the effect of selected bee venom peptides on the erythrocyte ghosts, further proteomic research should be focused on the quantitative analysis.

18.
Sci Rep ; 10(1): 4885, 2020 03 17.
Article in English | MEDLINE | ID: mdl-32184422

ABSTRACT

The use of illicit drugs causes unquestionable societal and economic damage. To implement actions aimed at combating drug abuse, it is necessary to assess illicit drug consumption patterns. The purpose of this paper was to develop, optimize, validate and apply a procedure for determining new psychoactive substances (NPSs) and classic drugs of abuse and their main metabolites in wastewater samples by using solid phase extraction (SPE) and high-performance liquid chromatography coupled with tandem mass spectrometry (HPLC-MS/MS). Moreover, detailed validation of the procedure was conducted. The developed SPE-HPLC-MS/MS procedure (within the sewage-based epidemiology strategy) allowed for the simultaneous, selective, very sensitive, accurate (recoveries ≥ 80.1%) and precise (CV ≤ 8.1%) determination of new and classic psychoactive substances in wastewater samples. This study is characterized by new scientific elements, especially in terms of the freeze-thaw and post-preparative stability of the selected psychoactive substances. This is the first time that NPSs (mephedrone and ketamine), the main metabolites of heroin (6-acetylmorphine, 6-AM) and marijuana (11-nor-9-carboxy-Δ9-tetrahydrocannabinol, THC-COOH) have been detected and monitored in Poland. This study is also the first to corroborate the data available from the EMCDDA and EUROPOL report and indicates that the retail market for cocaine is expanding in Eastern Europe.


Subject(s)
Illicit Drugs/analysis , Psychotropic Drugs/analysis , Wastewater/analysis , Chromatography, High Pressure Liquid , Europe, Eastern , Humans , Morphine Derivatives/analysis , Solid Phase Extraction , Tandem Mass Spectrometry , Urban Health
19.
Cancers (Basel) ; 12(1)2020 Jan 06.
Article in English | MEDLINE | ID: mdl-31935820

ABSTRACT

Background: Oral squamous cell carcinoma remains a significant worldwide public health challenge, associated with high morbidity and mortality. Treatment of this type of cancer lacks effective medication. Moreover, there are very few specific biomarkers that are useful in early diagnosis or treatment optimisation. Proline metabolism may prove to be of importance in the search for new treatment modalities. Methods: To evaluate the significance of proline metabolism in the development of oral cancer, proline concentration was assessed in oral cancer tissue and normal oral mucosa. The results were compared to the clinical stage and histological grade of the tumours. Moreover, the expression of proteins involved in proline metabolism via proline dehydrogenase/oxidase (PRODH/POX, PPARγ, HIF1-α) was determined. In the next stage of the study, conducted on cell lines of tongue cancer treated with celecoxib, the aforementioned factors involved in proline metabolism were evaluated. Cellular viability and cell proliferation, as well as apoptosis, were also assessed. Results: Our research results indicate that a high intracellular proline concentration and expression of factors involved in its metabolism correlate with the clinical stage and histological grade of oral cancer. Moreover, we are the first researchers to demonstrate that celecoxib can affect proline metabolism, causing an increase in pro-apoptotic factors (PRODH/POX, PPARγ), reducing the expression of HIF-1α and activating apoptosis. Conclusions: Proline metabolism, due to its involvement in the process of apoptosis, can be of great importance in anticancer therapy. It appears that celecoxib, which influences the PRODH/POX pathway, may be a promising therapeutic compound in oral cancer treatment.

20.
Article in English | MEDLINE | ID: mdl-31798646

ABSTRACT

BACKGROUND: Hymenoptera venom allergy is one of the most frequent causes of anaphylaxis. In its most severe form, the reaction to wasp and honey bee stings may be life-threatening. Therefore, immediate and proper diagnosis of venom allergy and implementation of suitable therapy are extremely important. Broadening the knowledge on the mechanism of the allergic reaction may contribute to the improvement of both diagnostic and treatment methods. Thus, this study aimed to discover changes in protein expression in serum of patients allergic to Hymenoptera (wasp and honeybee) venom and to point out proteins and peptides involved in the allergic inflammation. METHODS: Serum proteomic patterns typical to allergic patients and healthy volunteers were obtained with MALDI-TOF (matrix-assisted laser desorption/ionization-time of flight) mass spectrometer. The spectra were processed, analyzed and compared using advanced bioinformatics tools. The discriminative peaks were subjected to identification with liquid chromatography coupled with tandem mass spectrometry. RESULTS: This methodology allowed for the identification of four features differentiating between allergy and control groups. They were: fibrinogen alpha chain, coagulation factor XIII chain A, complement C4-A, and inter-alpha-trypsin inhibitor heavy chain H4. All of these proteins are involved in allergic inflammatory response. CONCLUSIONS: Extending the knowledge of the Hymenoptera venom sensitization will contribute to the development of novel, sensitive and specific methods for quick and unambiguous allergy diagnosis. Understanding the basis of the allergy at the proteomic level will support the improvement of preventive and therapeutic measures.

SELECTION OF CITATIONS
SEARCH DETAIL