Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 49
Filter
1.
BMC Infect Dis ; 24(1): 120, 2024 Jan 23.
Article in English | MEDLINE | ID: mdl-38263063

ABSTRACT

BACKGROUND: An increase in patients with multidrug-resistant organisms and associated outbreaks during the COVID-19 pandemic have been reported in various settings, including low-endemic settings. Here, we report three distinct carbapenem-resistant Acinetobacter baumannii (CRAB) outbreaks in five intensive care units of a university hospital in Berlin, Germany during the COVID-19 pandemic. METHODS: A case-control study was conducted with the objective of identifying risk factors for CRAB acquisition in outbreak situations. Data utilized for the case-control study came from the investigation of three separate CRAB outbreaks during the COVID-19 pandemic (August 2020- March 2021). Cases were defined as outbreak patients with hospital-acquired CRAB. Controls did not have any CRAB positive microbiological findings and were hospitalized at the same ward and for a similar duration as the respective case. Control patients were matched retrospectively in a 2:1 ratio. Parameters routinely collected in the context of outbreak management and data obtained retrospectively specifically for the case-control study were included in the analysis. To analyze risk factors for CRAB acquisition, univariable and multivariable analyses to calculate odds ratios (OR) and 95% confidence intervals (CI) were performed using a conditional logistic regression model. RESULTS: The outbreaks contained 26 cases with hospital-acquired CRAB in five different intensive care units. Two exposures were identified to be independent risk factors for nosocomial CRAB acquisition by the multivariable regression analysis: Sharing a patient room with a CRAB patient before availability of the microbiological result was associated with a more than tenfold increase in the risk of nosocomial CRAB acquisition (OR: 10.7, CI: 2.3-50.9), while undergoing bronchoscopy increased the risk more than six times (OR: 6.9, CI: 1.3-38.1). CONCLUSIONS: The risk factors identified, sharing a patient room with a CRAB patient and undergoing bronchoscopy, could point to an underperformance of basic infection control measure, particularly hand hygiene compliance and handling of medical devices. Both findings reinforce the need for continued promotion of infection control measures. Given that the outbreaks occurred in the first year of the COVID-19 pandemic, our study serves as a reminder that a heightened focus on airborne precautions should not lead to a neglect of other transmission-based precautions.


Subject(s)
Acinetobacter baumannii , COVID-19 , Cross Infection , Humans , Case-Control Studies , Pandemics , Retrospective Studies , Disease Outbreaks , Hospitals, University , Carbapenems
2.
Int J Med Microbiol ; 314: 151594, 2024 Mar.
Article in English | MEDLINE | ID: mdl-38154413

ABSTRACT

PURPOSE: Data from the intensive care component of the German hospital infection surveillance system (KISS) was used to investigate the epidemiology of pathogens responsible for the most frequent device-associated infections and their development over time. METHOD: The 10 most common pathogens were identified for ventilator-associated lower respiratory tract infections (VALRTI), catheter associated urinary tract infections (CAUTI), and central venous catheter associated bloodstream infections (CVC-BSI). The development over time was analyzed based on three five-year time periods: 2008-2012, 2013-2017, 2018-2022. RESULTS: Data from 1425 ICUs were included together with 121,762 device-associated infections with 138,299 isolated pathogens. A remarkable and significant increase in the frequency of Klebsiella spp. was found for VALRTI, that was almost twice as high during 2018-2022 compared to 2008-2012. For CAUTI, there was a significant increase of all Enterobacterales with the most prominent increase in Klebsiella spp. With regard to CVC-BSI, the situation for coagulase-negative staphylococci and E. coli was relatively stable; while there was a significant increase in Enterococcus spp. and Klebsiella spp. and a decrease in S. aureus. CONCLUSION: Knowledge about the current frequency of pathogens responsible for nosocomial infections in intensive care units is important for guiding empirical antimicrobial therapy. Data from national nosocomial infection surveillance systems can provide relevant information about the development of pathogens.


Subject(s)
Catheter-Related Infections , Cross Infection , Respiratory Tract Infections , Urinary Tract Infections , Humans , Cross Infection/epidemiology , Escherichia coli , Staphylococcus aureus , Hospitals , Urinary Tract Infections/epidemiology , Critical Care , Catheter-Related Infections/epidemiology , Catheter-Related Infections/complications
3.
J Antimicrob Chemother ; 78(9): 2185-2191, 2023 09 05.
Article in English | MEDLINE | ID: mdl-37473450

ABSTRACT

BACKGROUND: In recent years, an increasing number of linezolid-resistant enterococci (LRE) was recognized at the German National Reference Centre (NRC) for Enterococci. National guidelines on infection prevention recommend screening for LRE in epidemiologically linked hospital settings without referring to a reliable and rapid diagnostic method. Since 2020, CHROMAgar™ provide a chromogenic linezolid screening agar, LIN-R, suitable to simultaneously screen for linezolid-resistant staphylococci and enterococci. OBJECTIVES: To assess the applicability of CHROMAgar™ LIN-R in clinical settings for detecting LRE directly from patient material and to infer prevalence rates of LRE amongst German hospital patients. METHODS: During the 3-month trial period, clinical samples were plated on CHROMAgar™ LIN-R. Antimicrobial susceptibility testing was performed using VITEK2 or disc diffusion. At the NRC, linezolid resistance was determined by broth microdilution, multiplex-PCR for cfr/optrA/poxtA and by a restriction-based assay for 23S rDNA mutations. RESULTS: The 12 participating study sites used 13 963 CHROMAgar™ LIN-R plates during the study period. Of 442 presumptive LRE, 192 were confirmed by phenotypic methods. Of these, 161 were received by the NRC and 121 (75%) were verified as LRE. Most of LR-E. faecium 53/81 (65%) exhibited a 23S rRNA gene mutation as the sole resistance-mediating mechanism, whereas optrA constituted the dominant resistance trait in LR-E. faecalis [39/40 (98%)]. Prevalence of LRE across sites was estimated as 1% (ranging 0.18%-3.7% between sites). CONCLUSIONS: CHROMAgar™ LIN-R represents a simple and efficient LRE screening tool in hospital settings. A high proportion of false-positive results demands validation of linezolid resistance by a reference method.


Subject(s)
Enterococcus faecium , Gram-Positive Bacterial Infections , Humans , Linezolid/pharmacology , Anti-Bacterial Agents/pharmacology , Prevalence , Drug Resistance, Bacterial/genetics , Enterococcus/genetics , Hospitals , Gram-Positive Bacterial Infections/epidemiology , Enterococcus faecium/genetics , Microbial Sensitivity Tests , Enterococcus faecalis
4.
Dtsch Arztebl Int ; 120(26): 447-453, 2023 06 30.
Article in English | MEDLINE | ID: mdl-37199029

ABSTRACT

BACKGROUND: Methicillin-resistant Staphylococcus aureus (MRSA) has become less common in Germany in recent years. In this paper, we report data from the MRSA module of the Hospital Infection Surveillance System (Krankenhaus-Infektionen- Surveillance-System, KISS) for the years 2006-2021. We also describe the association of MRSA rates with the frequency of patient screening for MRSA and discuss the findings. METHODS: Participation in the MRSA KISS module is voluntary. Once a year, the participating hospitals submit structural data, information on cases in which MRSA was detected (both colonizations and infections; both detected on admission and nosocomially acquired), and the number of nasal swabs taken for the detection of MRSA to the German National Reference Center for the Surveillance of Nosocomial Infections. Statistical analyses were performed with R software. RESULTS: The number of hospitals participating in the MRSA module rose from 110 in 2006 to 525 in 2021. From 2006 onward, the overall MRSA prevalence in German hospitals increased, reaching a maximum of 1.04 cases per 100 patients in 2012. The prevalence on admission fell by 44% from 0.96 in 2016 to 0.54 in 2021. The incidence density of nosocomial MRSA fell by an average of 12% per year, from 0.27 per 1000 patient-days in 2006 to 0.06 in 2021, while MRSA screening frequency increased sevenfold by 2021. The nosocomial incidence density was stable, independently of the screening frequency. CONCLUSION: MRSA rates in German hospitals fell markedly from 2006 to 2021, reflecting a general trend. The incidence density was no higher in hospitals with a low or moderate screening frequency than in those with a high one. Thus, a targeted, riskadapted MRSA screening strategy on hospital admission can be recommended.


Subject(s)
Cross Infection , Methicillin-Resistant Staphylococcus aureus , Staphylococcal Infections , Humans , Staphylococcal Infections/diagnosis , Staphylococcal Infections/epidemiology , Population Surveillance , Cross Infection/epidemiology , Cross Infection/prevention & control , Infection Control
5.
Infect Control Hosp Epidemiol ; 44(9): 1410-1416, 2023 09.
Article in English | MEDLINE | ID: mdl-36912321

ABSTRACT

OBJECTIVES: The aim of this study was to quantify the time delay between screening and initiation of contact isolation for carriers of extended-spectrum beta-lactamase (ESBL)-producing Enterobacterales (ESBL-E). METHODS: This study was a secondary analysis of contact isolation periods in a cluster-randomized controlled trial that compared 2 strategies to control ESBL-E (trial no. ISRCTN57648070). Patients admitted to 20 non-ICU wards in Germany, the Netherlands, Spain, and Switzerland were screened for ESBL-E carriage on admission, weekly thereafter, and on discharge. Data collection included the day of sampling, the day the wards were notified of the result, and subsequent ESBL-E isolation days. RESULTS: Between January 2014 and August 2016, 19,122 patients, with a length of stay ≥2 days were included. At least 1 culture was collected for 16,091 patients (84%), with a median duration between the admission day and the day of first sample collection of 2 days (interquartile range [IQR], 1-3). Moreover, 854 (41%) of all 2,078 ESBL-E carriers remained without isolation during their hospital stay. In total, 6,040 ESBL-E days (32% of all ESBL-E days) accrued for patients who were not isolated. Of 2,078 ESBL-E-carriers, 1,478 ESBL-E carriers (71%) had no previous history of ESBL-E carriage. Also, 697 (34%) were placed in contact isolation with a delay of 4 days (IQR, 2-5), accounting for 2,723 nonisolation days (15% of ESBL-E days). CONCLUSIONS: Even with extensive surveillance screening, almost one-third of all ESBL-E days were nonisolation days. Limitations in routine culture-based ESBL-E detection impeded timely and exhaustive implementation of targeted contact isolation.


Subject(s)
Cross Infection , Enterobacteriaceae Infections , Humans , Enterobacteriaceae , Enterobacteriaceae Infections/diagnosis , Enterobacteriaceae Infections/epidemiology , Enterobacteriaceae Infections/prevention & control , Cross Infection/prevention & control , beta-Lactamases , Quarantine
6.
Microb Genom ; 9(1)2023 01.
Article in English | MEDLINE | ID: mdl-36748706

ABSTRACT

The increase of Vancomycin-resistant Enterococcus faecium (VREfm) in recent years has been partially attributed to the rise of specific clonal lineages, which have been identified throughout Germany. To date, there is no gold standard for the interpretation of genomic data for outbreak analyses. New genomic approaches such as split k-mer analysis (SKA) could support cluster attribution for routine outbreak investigation. The aim of this project was to investigate frequent clonal lineages of VREfm identified during suspected outbreaks across different hospitals, and to compare genomic approaches including SKA in routine outbreak investigation. We used routine outbreak laboratory data from seven hospitals and three different hospital networks in Berlin, Germany. Short-read libraries were sequenced on the Illumina MiSeq system. We determined clusters using the published Enterococcus faecium-cgMLST scheme (threshold ≤20 alleles), and assigned sequence and complex types (ST, CT), using the Ridom SeqSphere+ software. For each cluster as determined by cgMLST, we used pairwise core-genome SNP-analysis and SKA at thresholds of ten and seven SNPs, respectively, to further distinguish cgMLST clusters. In order to investigate clinical relevance, we analysed to what extent epidemiological linkage backed the clusters determined with different genomic approaches. Between 2014 and 2021, we sequenced 693 VREfm strains, and 644 (93 %) were associated within cgMLST clusters. More than 74 % (n=475) of the strains belonged to the six largest cgMLST clusters, comprising ST117, ST78 and ST80. All six clusters were detected across several years and hospitals without apparent epidemiological links. Core SNP analysis identified 44 clusters with a median cluster size of three isolates (IQR 2-7, min-max 2-63), as well as 197 singletons (41.4 % of 475 isolates). SKA identified 67 clusters with a median cluster size of two isolates (IQR 2-4, min-max 2-19), and 261 singletons (54.9 % of 475 isolates). Of the isolate pairs attributed to clusters, 7 % (n=3064/45 596) of pairs in clusters determined by standard cgMLST, 15 % (n=1222/8500) of pairs in core SNP-clusters and 51 % (n=942/1880) of pairs in SKA-clusters showed epidemiological linkage. The proportion of epidemiological linkage differed between sequence types. For VREfm, the discriminative ability of the widely used cgMLST based approach at ≤20 alleles difference was insufficient to rule out hospital outbreaks without further analytical methods. Cluster assignment guided by core genome SNP analysis and the reference free SKA was more discriminative and correlated better with obvious epidemiological linkage, at least recently published thresholds (ten and seven SNPs, respectively) and for frequent STs. Besides higher overall discriminative power, the whole-genome approach implemented in SKA is also easier and faster to conduct and requires less computational resources.


Subject(s)
Gram-Positive Bacterial Infections , Vancomycin-Resistant Enterococci , Humans , Vancomycin-Resistant Enterococci/genetics , Berlin/epidemiology , Polymorphism, Single Nucleotide , Genome, Bacterial , Gram-Positive Bacterial Infections/epidemiology , Disease Outbreaks , Hospitals , Germany/epidemiology
7.
Nat Commun ; 14(1): 140, 2023 01 10.
Article in English | MEDLINE | ID: mdl-36627272

ABSTRACT

Species within the Enterobacter cloacae complex (ECC) include globally important nosocomial pathogens. A three-year study of ECC in Germany identified Enterobacter xiangfangensis as the most common species (65.5%) detected, a result replicated by examining a global pool of 3246 isolates. Antibiotic resistance profiling revealed widespread resistance and heteroresistance to the antibiotic colistin and detected the mobile colistin resistance (mcr)-9 gene in 19.2% of all isolates. We show that resistance and heteroresistance properties depend on the chromosomal arnBCADTEF gene cassette whose products catalyze transfer of L-Ara4N to lipid A. Using comparative genomics, mutational analysis, and quantitative lipid A profiling we demonstrate that intrinsic lipid A modification levels are genospecies-dependent and governed by allelic variations in phoPQ and mgrB, that encode a two-component sensor-activator system and specific inhibitor peptide. By generating phoPQ chimeras and combining them with mgrB alleles, we show that interactions at the pH-sensing interface of the sensory histidine kinase phoQ dictate arnBCADTEF expression levels. To minimize therapeutic failures, we developed an assay that accurately detects colistin resistance levels for any ECC isolate.


Subject(s)
Colistin , Lipid A , Colistin/pharmacology , Colistin/therapeutic use , Lipid A/chemistry , Lipid A/pharmacology , Bacterial Proteins/metabolism , Anti-Bacterial Agents/pharmacology , Anti-Bacterial Agents/therapeutic use , Enterobacter/genetics , Drug Resistance, Bacterial/genetics , Microbial Sensitivity Tests
8.
Neonatology ; 120(2): 176-184, 2023.
Article in English | MEDLINE | ID: mdl-36623500

ABSTRACT

BACKGROUND: Serratia marcescens may cause severe nosocomial infections, mostly in very low birth weight infants. Since S. marcescens exhibits by far the highest adjusted incidence rate for horizontal transmission, it can cause complex outbreak situations in neonatal intensive care units. OBJECTIVE: The aim of this study was to establish a fast and highly sensitive colonization screening for prompt cohorting and barrier nursing strategies. METHODS: A probe-based duplex PCR assay targeting the 16S rRNA gene of S. marcescens was developed and validated by using 36 reference strains, 14 S. marcescens outbreak- and nonoutbreak isolates, defined by epidemiological linkage and molecular typing, and applied in 1,347 clinical specimens from 505 patients. RESULTS AND CONCLUSIONS: The novel PCR assay proved to be highly specific and had an in vitro sensitivity of 100 gene copies per reaction (∼15 bacteria). It showed a similar (in laryngeal/tracheal specimens) or even higher (in rectal/stoma swabs) in vivo sensitivity in comparison to routine microbial culture and was much quicker (<24 h vs. 2 days). By combining different oligonucleotide primers, there was robust detection of genetic variants of S. marcescens strains. PCR inhibition was low (1.6%) and observed with rectal swabs only. Cohort analysis illustrated applicability of the PCR assay as a quick tool to prevent outbreak scenarios by allowing rapid decisions on cohorting and barrier nursing. In summary, this novel molecular screening for colonization by S. marcescens is specific, highly sensitive, and substantially accelerates detection.


Subject(s)
Cross Infection , Serratia Infections , Infant, Newborn , Infant , Humans , Intensive Care Units, Neonatal , Serratia marcescens/genetics , RNA, Ribosomal, 16S , Cross Infection/epidemiology , Cross Infection/prevention & control , Cross Infection/microbiology , Polymerase Chain Reaction , Disease Outbreaks/prevention & control , Serratia Infections/diagnosis , Serratia Infections/epidemiology , Serratia Infections/prevention & control
9.
Clin Microbiol Infect ; 29(4): 515-522, 2023 Apr.
Article in English | MEDLINE | ID: mdl-36481293

ABSTRACT

OBJECTIVES: Assessment of vancomycin-resistant Enterococcus faecium (VREfm) prevalence upon hospital admission and analysis of risk factors for colonization. METHODS: From 2014 to 2018, patients were recruited within 72 hours of admission to seven participating German university hospitals, screened for VREfm and questioned for potential risk factors (prior multidrug-resistant organism detection, current/prior antibiotic consumption, prior hospital, rehabilitation or long-term care facility stay, international travel, animal contact and proton pump inhibitor [PPI]/antacid therapy). Genotype analysis was done using cgMLST typing. Multivariable analysis was performed. RESULTS: In 5 years, 265 of 17,349 included patients were colonized with VREfm (a prevalence of 1.5%). Risk factors for VREfm colonization were age (adjusted OR [aOR], 1.02; 95% CI, 1.01-1.03), previous (aOR, 2.71; 95% CI, 1.87-3.92) or current (aOR, 2.91; 95% CI, 2.60-3.24) antibiotic treatment, prior multidrug-resistant organism detection (aOR, 2.83; 95% CI, 2.21-3.63), prior stay in a long-term care facility (aOR, 2.19; 95% CI, 1.62-2.97), prior stay in a hospital (aOR, 2.91; 95% CI, 2.05-4.13) and prior consumption of PPI/antacids (aOR, 1.29; 95% CI, 1.18-1.41). Overall, the VREfm admission prevalence increased by 33% each year and 2% each year of life. 250 of 265 isolates were genotyped and 141 (53.2%) of the VREfm were the emerging ST117. Multivariable analysis showed that ST117 and non-ST117 VREfm colonized patients differed with respect to admission year and prior multidrug-resistant organism detection. DISCUSSION: Age, healthcare contacts and antibiotic and PPI/antacid consumption increase the individual risk of VREfm colonization. The VREfm admission prevalence increase in Germany is mainly driven by the emergence of ST117.


Subject(s)
Cross Infection , Enterococcus faecium , Gram-Positive Bacterial Infections , Vancomycin-Resistant Enterococci , Animals , Vancomycin/pharmacology , Hospitals, University , Cross-Sectional Studies , Prevalence , Antacids , Anti-Bacterial Agents/pharmacology , Risk Factors , Gram-Positive Bacterial Infections/epidemiology , Gram-Positive Bacterial Infections/microbiology , Cross Infection/epidemiology , Cross Infection/microbiology
10.
Antibiotics (Basel) ; 11(10)2022 09 21.
Article in English | MEDLINE | ID: mdl-36289942

ABSTRACT

To analyse the epidemiology and population structure of third-generation cephalosporin-resistant (3GCR) and carbapenem-resistant (CR) Klebsiella pneumoniae complex isolates, patients were screened for rectal colonisation with 3GCR/CR K. pneumoniae complex on admission to six German university hospitals (2016-2019). Also collected were 3GCR/CR and susceptible K. pneumoniae isolates from patients with bloodstream infections (2016-2018). Whole-genome sequencing was performed followed by multilocus sequencing typing (MLST), core-genome MLST, and resistome and virulome analysis. The admission prevalence of 3GCR K. pneumoniae complex isolates during the 4-year study period was 0.8%, and 1.0 bloodstream infection per 1000 patient admissions was caused by K. pneumoniae complex (3GCR prevalence, 15.1%). A total of seven K. pneumoniae complex bloodstream isolates were CR (0.8%). The majority of colonising and bloodstream 3GCR isolates were identified as K. pneumoniae, 96.7% and 98.8%, respectively; the remainder were K. variicola and K. quasipneumoniae. cgMLST showed a polyclonal population of colonising and bloodstream isolates, which was also reflected by MLST and virulome analysis. CTX-M-15 was the most prevalent extended-spectrum beta-lactamase, and 29.7% of the colonising and 48.8% of the bloodstream isolates were high-risk clones. The present study provides an insight into the polyclonal 3GCR K. pneumoniae population in German hospitals.

11.
Nat Methods ; 19(4): 429-440, 2022 04.
Article in English | MEDLINE | ID: mdl-35396482

ABSTRACT

Evaluating metagenomic software is key for optimizing metagenome interpretation and focus of the Initiative for the Critical Assessment of Metagenome Interpretation (CAMI). The CAMI II challenge engaged the community to assess methods on realistic and complex datasets with long- and short-read sequences, created computationally from around 1,700 new and known genomes, as well as 600 new plasmids and viruses. Here we analyze 5,002 results by 76 program versions. Substantial improvements were seen in assembly, some due to long-read data. Related strains still were challenging for assembly and genome recovery through binning, as was assembly quality for the latter. Profilers markedly matured, with taxon profilers and binners excelling at higher bacterial ranks, but underperforming for viruses and Archaea. Clinical pathogen detection results revealed a need to improve reproducibility. Runtime and memory usage analyses identified efficient programs, including top performers with other metrics. The results identify challenges and guide researchers in selecting methods for analyses.


Subject(s)
Metagenome , Metagenomics , Archaea/genetics , Metagenomics/methods , Reproducibility of Results , Sequence Analysis, DNA , Software
13.
PLoS One ; 16(6): e0253633, 2021.
Article in English | MEDLINE | ID: mdl-34170945

ABSTRACT

INTRODUCTION: Skin and soft tissue infections (SSTI) caused by Panton-Valentine leukocidin (PVL)-producing strains of Staphylococcus aureus (PVL-SA) are associated with recurrent skin abscesses. Secondary prevention, in conjunction with primary treatment of the infection, focuses on topical decolonization. Topical decolonization is a standard procedure in cases of recurrent PVL-SA skin infections and is recommended in international guidelines. However, this outpatient treatment is often not fully reimbursed by health insurance providers, which may interfere with successful PVL-SA decolonization. AIM: Our goal was to estimate the cost effectiveness of outpatient decolonization of patients with recurrent PVL-SA skin infections. We calculated the average cost of treatment for PVL-SA per outpatient decolonization procedure as well as per in-hospital stay. METHODS: The study was conducted between 2014 and 2018 at a German tertiary care university hospital. The cohort analyzed was obtained from the hospital's microbiology laboratory database. Data on medical costs, DRG-based diagnoses, and ICD-10 patient data was obtained from the hospital's financial controlling department. We calculated the average cost of treatment for patients admitted for treatment of PVL-SA induced skin infections. The cost of outpatient treatment is based on the German regulations of drug prices for prescription drugs. RESULTS: We analyzed a total of n = 466 swabs from n = 411 patients with recurrent skin infections suspected of carrying PVL-SA. PVL-SA was detected in 61.3% of all patients included in the study. Of those isolates, 80.6% were methicillin-susceptible, 19.4% methicillin-resistant. 89.8% of all patients were treated as outpatients. In 73.0% of inpatients colonized with PVL-SA the main diagnosis was SSTI. The median length of stay was 5.5 days for inpatients colonized with PVL-SA whose main diagnosis SSTI; the average cost was €2,283. The estimated costs per decolonization procedure in outpatients ranged from €50-€110, depending on the products used. CONCLUSION: Our data shows that outpatient decolonization offers a highly cost-effective secondary prevention strategy, which may prevent costly inpatient treatments. Therefore, health insurance companies should consider providing coverage of outpatient treatment of recurrent PVL-SA skin and soft tissue infections.


Subject(s)
Ambulatory Care , Bacterial Toxins/biosynthesis , Exotoxins/biosynthesis , Leukocidins/biosynthesis , Methicillin-Resistant Staphylococcus aureus/metabolism , Staphylococcal Skin Infections/therapy , Adolescent , Adult , Child , Female , Follow-Up Studies , Humans , Male , Middle Aged , Outpatients , Retrospective Studies , Staphylococcal Skin Infections/economics
14.
J Infect ; 83(2): 156-166, 2021 08.
Article in English | MEDLINE | ID: mdl-34000343

ABSTRACT

OBJECTIVES: We aimed to evaluate different interventions to reduce multidrug-resistant Enterobacteriaceae (MDR-E) infection/colonization. METHODS: A systematic review and meta-analysis evaluating interventions for prevention of MDR-E infection/colonization among hospitalized adult patients. The co-primary outcomes were mortality and MDR-E infections. PubMed, Cochrane library, and LILACS databases were searched up till December 2019, as well as grey literature sources. We included randomized controlled trials and observational studies. Infection/colonization/acquisition outcomes were reported per patient-days as pooled incidence ratios (IRs) with 95% confidence intervals (CIs). Interrupted time series (ITS) analysis studies were reported separately. RESULTS: Sixty-three studies were included, 16 RCTs, 33 observational studies, and 14 ITS. For the intervention of antimicrobial stewardship program (ASP), 23 studies were included. No differences in mortality or MDR-E infections were observed with ASP, however, MDR-E colonization was significantly reduced (IR 0.69, 95% CI 0.57-0.82). Seventeen studies examined decolonization without significant difference in outcomes. Other interventions were scarcely represented. Among 14 ITS publications, most evaluating ASP, 11 showed benefit of the intervention. CONCLUSIONS: ASP is an effective measure in preventing MDR-E colonization. Decolonization did not show significant benefit in reducing infection or colonization. Studies are needed to evaluate the cost effectiveness of ASP and assess bundles of interventions.


Subject(s)
Enterobacteriaceae , Adult , Humans
15.
GMS Hyg Infect Control ; 16: Doc06, 2021.
Article in English | MEDLINE | ID: mdl-33643773

ABSTRACT

Background: Hospital-acquired infections due to vancomycin-resistant enterococci (VRE) are emerging globally. The aims of our study were to estimate VRE colonisation prevalence in patients upon admission, to determine possible risk factors for VR E. faecium acquisition that already exist in the outpatient setting, and to monitor whether VRE-colonised patients developed a VRE infection during their current hospital stay. Methods: In 2014 and 2015, patients admitted to non-intensive care units were screened for rectal VRE carriage. The study patients filled out a questionnaire on potential risk factors. Analyses were restricted to VR E. faecium carriage. All patients with VRE colonisation were retrospectively monitored for infections with VRE during their current hospital stay. Results: In 4,013 enrolled patients, the VRE colonisation prevalence upon admission was 1.2% (n=48), and colonisation prevalence was 1.1% (n=45) for VR E. faecium. Only one VRE-colonised patient developed an infection with the detection of a VRE, among others. Colonisation with VR E. faecium was associated with current antibiotic use. Risk factors of VR E. faecium colonisation upon admission were increasing age, previous colonisation or infection with multidrug resistant organisms, sampling year 2015, and, within the previous six months, antibiotic exposure, a stay at a rehabilitation center, and a hospital stay. Conclusions: We observed that antibiotic treatment which occurred prior admission influenced VR E. faecium prevalence upon admission. Thus, wise antibiotic use in outpatient settings plays a major role in the prevention of VR E. faecium acquisition.

16.
PLoS Comput Biol ; 17(2): e1008600, 2021 02.
Article in English | MEDLINE | ID: mdl-33534784

ABSTRACT

The aim of this study is to analyze patient movement patterns between hospital departments to derive the underlying intra-hospital movement network, and to assess if movement patterns differ between patients at high or low risk of colonization. For that purpose, we analyzed patient electronic medical record data from five hospitals to extract information on risk stratification and patient intra-hospital movements. Movement patterns were visualized as networks, and network centrality measures were calculated. Next, using an agent-based model where agents represent patients and intra-hospital patient movements were explicitly modeled, we simulated the spread of multidrug resistant enterobacteriacae (MDR-E) inside a hospital. Risk stratification of patients according to certain ICD-10 codes revealed that length of stay, patient age, and mean number of movements per admission were higher in the high-risk groups. Movement networks in all hospitals displayed a high variability among departments concerning their network centrality and connectedness with a few highly connected departments and many weakly connected peripheral departments. Simulating the spread of a pathogen in one hospital network showed positive correlation between department prevalence and network centrality measures. This study highlights the importance of intra-hospital patient movements and their possible impact on pathogen spread. Targeting interventions to departments of higher (weighted) degree may help to control the spread of MDR-E. Moreover, when the colonization status of patients coming from different departments is unknown, a ranking system based on department centralities may be used to design more effective interventions that mitigate pathogen spread.


Subject(s)
Cross Infection/epidemiology , Cross Infection/transmission , Hospitals , Movement , Patient Transfer/methods , Computer Simulation , Delivery of Health Care , Drug Resistance, Multiple , Female , Hospitalization , Humans , Male , Models, Theoretical , Patient Admission , Prevalence , Programming Languages , Reproducibility of Results , Risk Assessment , Transportation
17.
Antimicrob Resist Infect Control ; 9(1): 109, 2020 07 16.
Article in English | MEDLINE | ID: mdl-32678047

ABSTRACT

BACKGROUND: In addition to an overall rise in vancomycin-resistant Enterococcus faecium (VREfm), an increase in certain strain types marked by sequence type (ST) and cluster type (CT) has been reported in Germany over the past few years. Outbreak analyses at Charité - Universitätsmedizin Berlin revealed the frequent occurrence of VREfm ST117 CT71 isolates in 2017 and 2018. To investigate whether ST117 CT71 have emerged in recent years or whether these strains have been circulating for a longer time, we retrospectively analyzed non-outbreak strains that occurred between 2008 and 2018 to identify frequent STs and CTs. METHODS: In total, 120 VREfm isolates obtained from clinical and surveillance cultures from the years 2008, 2013, 2015, and 2018 were analyzed. Thirty isolates per year comprising the first 7-8 non-outbreak isolates of each quarter of the respective year were sequenced using whole genome sequencing. MLST and cgMLST were determined as well as resistance genes and virulence factors. Risk factors for VREfm ST117 were analyzed in a multivariable analysis with patient characteristics as possible confounders. RESULTS: The percentage of VREfm of type ST117 increased from 17% in 2008 to 57% in 2018 (p = 0.012). In 2008, vanA genotype accounted for 80% of all ST117 isolates compared to 6% in 2018. VanB CT71 first appeared in 2018 and predominated over all other ST117 at 43% (p < 0.0001). The set of resistance genes (msrC, efmA, erm(B), dfrG, aac(6')-Ii, gyrA, parC and pbp5) and virulence factors (acm, esp, hylEfm, ecbA and sgrA) in CT71 was also found in other ST117 non-CT71 strains, mainly in CT36. The study population did not differ among the different calendar years analyzed in terms of age, gender, length of stay, or ward type (each p > 0.2). CONCLUSION: This study revealed an increase in ST117 strains from 2008 to 2018, accompanied by a shift toward CT71 strains with the vanB genotype in 2018. We did not detect resistance or virulence traits in CT71 that could confer survival advantage compared to other CTs among ST117 strains. To date, it is not clear why ST117 and in particular strain type ST117 CT71 predominates over other strains.


Subject(s)
Anti-Bacterial Agents/pharmacology , Gram-Positive Bacterial Infections/microbiology , Vancomycin-Resistant Enterococci/classification , Vancomycin-Resistant Enterococci/drug effects , Vancomycin/pharmacology , Aged , Bacterial Typing Techniques , Berlin , Cross Infection/epidemiology , Female , Genome, Bacterial , Genotype , Humans , Male , Microbial Sensitivity Tests , Middle Aged , Multilocus Sequence Typing , Retrospective Studies , Virulence , Virulence Factors/genetics , Whole Genome Sequencing
18.
J Antimicrob Chemother ; 75(10): 2743-2751, 2020 10 01.
Article in English | MEDLINE | ID: mdl-32699884

ABSTRACT

OBJECTIVES: To analyse the rectal carriage rate and the molecular epidemiology of vancomycin-resistant Enterococcus faecium (VREfm) recovered from patients upon hospital admission. METHODS: Adult patients were screened at six German university hospitals from five different federal states upon hospital admission for rectal colonization with VREfm between 2014 and 2018. Molecular characterization of VREfm was performed by WGS followed by MLST and core-genome MLST analysis. RESULTS: Of 16350 patients recruited, 263 were colonized with VREfm, with increasing prevalence rates during the 5 year study period (from 0.8% to 2.6%). In total, 78.5% of the VREfm were vanB positive and 20.2% vanA positive, while 1.2% harboured both vanA and vanB. The predominant ST was ST117 (56.7%) followed by ST80 (15%), ST203 (10.9%), ST78 (5.7%) and ST17 (3.2%). ST117/vanB VREfm isolates formed a large cluster of 96 closely related isolates extending across all six study centres and four smaller clusters comprising 13, 5, 4 and 3 isolates each. In contrast, among the other STs inter-regional clonal relatedness was rarely observed. CONCLUSIONS: To our knowledge, this is the largest admission prevalence and molecular epidemiology study of VREfm. These data provide insight into the epidemiology of VREfm at six German university hospitals and demonstrate the remarkable inter-regional clonal expansion of the ST117/vanB VREfm clone.


Subject(s)
Cross Infection , Enterococcus faecium , Gram-Positive Bacterial Infections , Vancomycin-Resistant Enterococci , Adult , Cross Infection/epidemiology , Enterococcus faecium/genetics , Genotype , Germany/epidemiology , Gram-Positive Bacterial Infections/epidemiology , Hospitals , Humans , Molecular Epidemiology , Multilocus Sequence Typing , Prevalence , Vancomycin , Vancomycin-Resistant Enterococci/genetics
19.
PLoS One ; 15(4): e0231772, 2020.
Article in English | MEDLINE | ID: mdl-32315364

ABSTRACT

BACKGROUND: Recurrent skin abscesses are often associated with Panton-Valentine leukocidin-producing strains of S. aureus (PVL-SA). Decolonization measures are required along with treatment of active infections to prevent re-infection and spreading. Even though most PVL-SA patients are treated as outpatients, there are few studies that assess the effectiveness of outpatient topical decolonization in PVL-SA patients. METHODS: We assessed the results of topical decolonization of PVL-SA in a retrospective review of patient files and personal interviews. Successful decolonization was defined as the absence of any skin abscesses for at least 6 months after completion of the final decolonization treatment. Clinical and demographic data was assessed. An intention-to-treat protocol was used. RESULTS: Our cohort consisted of 115 symptomatic patients, 66% from PVL-positive MSSA and 19% from PVL-positive MRSA. The remaining 16% consisted of symptomatic patients with close contact to PVL-SA positive index patients but without detection of PVL-SA. The majority of patients were female (66%). The median age was 29.87% of the patients lived in multiple person households. Our results showed a 48% reduction in symptomatic PVL-SA cases after the first decolonization treatment. The results also showed that the decrease continued with each repeated decolonization treatment and reached 89% following the 5th treatment. A built multivariable Cox proportional-hazards model showed that the absence of PVL-SA detection (OR 2.0) and living in single person households (OR 2.4) were associated with an independently increased chance of successful decolonization. CONCLUSION: In our cohort, topical decolonization was a successful preventive measure for reducing the risk of PVL-SA skin abscesses in the outpatient setting. Special attention should be given to patients living in multiple person households because these settings could confer a risk that decolonization will not be successful.


Subject(s)
Abscess/therapy , Anti-Infective Agents, Local/therapeutic use , Bacterial Toxins/metabolism , Exotoxins/metabolism , Leukocidins/metabolism , Methicillin-Resistant Staphylococcus aureus/drug effects , Staphylococcal Skin Infections/therapy , Adolescent , Adult , Aged , Anti-Infective Agents, Local/pharmacology , Child , Child, Preschool , Cohort Studies , Female , Humans , Infant , Infant, Newborn , Male , Methicillin-Resistant Staphylococcus aureus/metabolism , Middle Aged , Outpatients , Recurrence , Retrospective Studies , Young Adult
20.
J Antimicrob Chemother ; 75(6): 1631-1638, 2020 06 01.
Article in English | MEDLINE | ID: mdl-32173738

ABSTRACT

OBJECTIVES: To assess the admission prevalence of third-generation cephalosporin-resistant Enterobacterales (3GCREB) and to assess whether risk factors vary by ß-lactamase genotype. METHODS: Adult patients were recruited within 72 h of admission to general wards of six university hospitals in 2014 and 2015. Rectal swabs were screened for 3GCREB and isolates were analysed phenotypically and genotypically. Patients were questioned on potential risk factors. Multivariable analyses were performed to identify risk factors for 3GCREB colonization and for specific ß-lactamases. RESULTS: Of 8753 patients screened, 828 were 3GCREB positive (9.5%). Eight hundred and thirteen isolates were available for genotyping. CTX-M-15 was the most common ESBL (38.0%), followed by CTX-M-1 (22.5%), CTX-M-14 (8.7%), CTX-M-27 (7.5%) and SHV-ESBL (4.4%). AmpC was found in 11.9%. Interestingly, 18 Escherichia coli isolates were AmpC positive, 12 of which (67%) contained AmpC on a gene of plasmid origin [CMY (n = 10), DHA (n = 2)]. Risk factors for 3GCREB colonization varied by genotype. Recent antibiotic exposure and prior colonization by antibiotic-resistant bacteria were risk factors for all ß-lactamases except CTX-M-14 and CTX-M-27. Travel outside Europe was a risk factor for CTX-M-15 and CTX-M-27 [adjusted OR (aOR) 3.49, 95% CI 2.88-4.24 and aOR 2.73, 95% CI 1.68-4.43]. A previous stay in a long-term care facility was associated with CTX-M-14 (aOR 3.01, 95% CI 1.98-4.59). A preceding hospital stay in Germany increased the risk of CTX-M-15 (aOR 1.27, 95% CI 1.14-1.41), while a prior hospital stay in other European countries increased the risk of SHV-ESBL colonization (aOR 3.85, 95% CI 1.67-8.92). CONCLUSIONS: The detection of different ESBL types is associated with specific risk factor sets that might represent distinct sources of colonization and ESBL-specific dissemination routes.


Subject(s)
Escherichia coli Infections , beta-Lactamases , Adult , Cephalosporins/pharmacology , Cross-Sectional Studies , Escherichia coli Infections/epidemiology , Europe , Genotype , Germany/epidemiology , Hospitals, University , Humans , Prevalence , beta-Lactamases/genetics
SELECTION OF CITATIONS
SEARCH DETAIL
...